Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters











Publication year range
1.
Physiol Rep ; 12(2): e15923, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38268116

ABSTRACT

Normal gonadal function can be disrupted by hypothyroidism. Hypothyroidism disturbs testicular function directly and centrally by affecting the hypothalamic-pituitary-testicular axis with unclear mechanism. As nesfatin-1 neurons co-localized with TRH and GnRH neurons in the hypothalamus, it could play a role in centrally hypothyroidism induced testicular dysfunction. Selenium (Se), by affecting thyroid iodide supply, could relieve these disturbances. So, we aim to identify the role of nesfatin-1 as a link between testicular dysfunction and hypothyroidism through modulating the MAPK/ERK pathway while discussing the possible role of Se in alleviating hypothyroidism and associated testicular damage. Forty male rats were divided equally into: Control: distilled water, Se: Se orally, Propylthiouracil (PTU): PTU orally, PTU + Se: Se with PTU orally. Serum thyroid function, gonadal hormones, nesfatin-1, testicular redox status, sperm analysis, brain tissue GnRH, nucleobindin 2-derived polypeptide, pMAPK/ERK gene expression, histological changes and immunohistochemical expression of testicular proliferating cell antigen (PCNA) were done. PTU induced hypothyroidism and reduction of gonadal hormones which both were correlated with reduced nesfatin-1. There was testicular stress with reduced GnRH, NUCB2, pMAPK/ERK gene expression, and PCNA immunopositive cells. These parameters were reversed by Se. Nesfatin-1 could be the central link between hypothyroidism and disturbances of the hypothalamic pituitary testicular axis.


Subject(s)
Hypothyroidism , Selenium , Male , Animals , Rats , Selenium/pharmacology , Proliferating Cell Nuclear Antigen , Semen , Gonadal Hormones , Gonadotropin-Releasing Hormone
2.
J Diabetes Metab Disord ; 22(2): 1471-1480, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37975106

ABSTRACT

Background: Diabetic Nephropathy (DN) is serious diabetic complication affecting the structure and function of the kidney. This study assessed the stimulator of interferon genes/ Interferon regulatory factor 3 (STING/IRF3) signaling pathway roles and inflammasome-activation mediated pyroptosis, being imperative pathways of inordinate importance in disease progression, in DN throughout its different stages. Methods: 45 Diabetic cases were categorized into three groups based on their albuminuric status as follow: Normoalbuminuric, Microalbuminuric and Macroalbuminuric diabetic groups and 15 healthy subjects as controls were included. We evaluated STING and absent in melanoma 2 (AIM2) messenger RNA (mRNA) expressions from whole blood using quantitative RT-PCR. Additionally, Serum levels of STING, AIM2, IRF3, Nod like receptor pyrins-3 (NLRP3), interleukin-1ß (IL-1ß) and caspase-1 were assessed by ELISA technique. Results: The study documented that STING and AIM2 mRNA expressions had significantly increased in DN cases with highest value in macroalbuminuric diabetic groups (p < 0.001*). Parallel results were observed concerning serum STING, AIM2, IRF3, NLRP3, Caspase-1 in addition to IL-1ß levels (p < 0.001*). Conclusion: The study documented the forthcoming role of STING in DN progression and its positive correlation with inflammasome-activation mediated pyroptosis biomarkers throughout its three different stages; launching new horizons in DN pathogenesis by highlighting its role as a reliable prognostic biomarker.

3.
Cell Biochem Funct ; 41(8): 1209-1219, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37771193

ABSTRACT

Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , HMGB1 Protein , Rats , Male , Animals , Valproic Acid/pharmacology , Liraglutide/pharmacology , Liraglutide/metabolism , Necroptosis , HMGB1 Protein/metabolism , HMGB1 Protein/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Saline Solution/metabolism , Saline Solution/pharmacology , Liver/metabolism , Superoxide Dismutase/metabolism , Water/metabolism , Water/pharmacology , Protein Kinases
4.
Mol Biol Rep ; 50(11): 9073-9083, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37728820

ABSTRACT

BACKGROUND: Vascular calcification (VC) is a major predictor of cardiovascular diseases that represent the principal cause of mortality among type-2 diabetic patients. Accumulating data suggest the vital role of some microRNAs on vascular calcification as an epigenetic regulator. Thus, we assessed herein, the role of serum miR-433-3p in vascular calcification in type-2 diabetic patients. METHODS: Twenty healthy subjects (control group) and forty diabetic patients (20 without VC and 20 with VC) were involved in the study. miR-433-3p gene expression was measured. Runx2, Dickkopf-1 (DKK1), ß-catenin, Receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) levels in serum were assessed by ELISA technique. RESULTS: Diabetes patients had significantly lower levels of miR-433-3p expression in comparison to the control group, with the lowest levels being found in diabetic patients with VC. Furthermore, Runx2, ß-catenin, and RANKL levels were significantly increased with concomitant lower DKK1 and OPG levels detected in the two diabetic groups especially those with VC. CONCLUSION: Collectively, the study documented that down-regulation of miR-433-3p may contribute to the development of VC through activating WNT/ß-Catenin and RANKL/RANK/OPG signaling pathways.


Subject(s)
Diabetes Mellitus, Type 2 , MicroRNAs , Vascular Calcification , Humans , Osteoprotegerin/genetics , Osteoprotegerin/metabolism , Core Binding Factor Alpha 1 Subunit/genetics , beta Catenin/genetics , beta Catenin/metabolism , Signal Transduction/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Vascular Calcification/genetics , Vascular Calcification/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics
5.
Pflugers Arch ; 475(10): 1161-1176, 2023 10.
Article in English | MEDLINE | ID: mdl-37561129

ABSTRACT

Growing evidence supports the role of the gut-kidney axis and persistent mitochondrial dysfunction in the pathogenesis of diabetic nephropathy (DN). Ulinastatin (UTI) has a potent anti-inflammatory effect, protecting the kidney and the gut barrier in sepsis, but its effect on DN has yet to be investigated. This study aimed to assess the potential mitigating effect of UTI on DN and investigate the possible involvement of gut-kidney axis and mitochondrial homeostasis in this effect. Forty male Wistar rats were divided equally into four groups: normal; UTI-treated control; untreated DN; and UTI-treated DN. At the end of the experiment, UTI ameliorated DN by modulating the gut-kidney axis as it improved serum and urinary creatinine, urine volume, creatinine clearance, blood urea nitrogen, urinary albumin, intestinal morphology including villus height, crypt depth, and number of goblet cells, with upregulating the expression of intestinal tight-junction protein claudin-1, and counteracting kidney changes as indicated by significantly decreasing glomerular tuft area and periglomerular and peritubular collagen deposition. In addition, it significantly reduced intestinal and renal nuclear factor kappa B (NF-κB), serum Complement 5a (C5a), renal monocyte chemoattractant protein-1 (MCP-1), renal intercellular adhesion molecule 1 (ICAM1), and renal signal transducer and activator of transcription 3 (STAT3), mitochondrial dynamin related protein 1 (Drp1), mitochondrial fission 1 protein (FIS1), mitochondrial reactive oxygen species (ROS), renal hydrogen peroxide (H2O2), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels. Furthermore, it significantly increased serum short chain fatty acids (SCFAs), and mitochondrial ATP levels and mitochondrial transmembrane potential. Moreover, there were significant correlations between measured markers of gut components of the gut-kidney axis and renal function tests in UTI-treated DN group. In conclusion, UTI has a promising therapeutic effect on DN by modulating the gut-kidney axis and improving renal mitochondrial dynamics and redox equilibrium.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Rats , Animals , Male , Diabetic Nephropathies/drug therapy , Streptozocin/metabolism , Streptozocin/pharmacology , Streptozocin/therapeutic use , Creatinine/metabolism , Creatinine/pharmacology , Hydrogen Peroxide/pharmacology , Diabetes Mellitus, Experimental/metabolism , Rats, Wistar , Kidney/metabolism
6.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37298433

ABSTRACT

Pulmonary fibrosis (PF) is a life-threatening disorder that severely disrupts normal lung architecture and function, resulting in severe respiratory failure and death. It has no definite treatment. Empagliflozin (EMPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, has protective potential in PF. However, the mechanisms underlying these effects require further elucidation. Therefore, this study aimed to evaluate the ameliorative effect of EMPA against bleomycin (BLM)-induced PF and the potential mechanisms. Twenty-four male Wister rats were randomly divided into four groups: control, BLM treated, EMPA treated, and EMPA+BLM treated. EMPA significantly improved the histopathological injuries illustrated by both hematoxylin and eosin and Masson's trichrome-stained lung tissue sections, as confirmed by electron microscopic examination. It significantly reduced the lung index, hydroxyproline content, and transforming growth factor ß1 levels in the BLM rat model. It had an anti-inflammatory effect, as evidenced by a decrease in the inflammatory cytokines' tumor necrosis factor alpha and high mobility group box 1, inflammatory cell infiltration into the bronchoalveolar lavage fluid, and the CD68 immunoreaction. Furthermore, EMPA mitigated oxidative stress, DNA fragmentation, ferroptosis, and endoplasmic reticulum stress, as evidenced by the up-regulation of nuclear factor erythroid 2-related factor expression, heme oxygenase-1 activity, glutathione peroxidase 4 levels, and a decrease in C/EBP homologous protein levels. This protective potential could be explained on the basis of autophagy induction via up-regulating lung sestrin2 expression and the LC3 II immunoreaction observed in this study. Our findings indicated that EMPA protected against BLM-induced PF-associated cellular stress by enhancing autophagy and modulating sestrin2/adenosine monophosphate-activated protein kinase/nuclear factor erythroid 2-related factor 2/heme oxygenase 1 signaling.


Subject(s)
Ferroptosis , Pulmonary Fibrosis , Rats , Male , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Bleomycin/toxicity , NF-E2-Related Factor 2/metabolism , AMP-Activated Protein Kinases/metabolism , Rats, Wistar , Lung/pathology
7.
Cell Biochem Funct ; 41(4): 450-460, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37051656

ABSTRACT

The cardiotoxic effect of chemotherapeutic agents as cisplatin has become a major issue recently. Interference with mitochondrial dynamics, biogenesis, redox status, and apoptosis are the most possible underlying mechanisms. Semaglutide is a human glucagon-like peptide-1 receptor agonist (GLP-1R), which is used primarily for the treatment of DM. Various recent studies have investigated (GLP-1R) role in cardiovascular diseases due to antiapoptotic and antioxidant effects. The current study aimed to investigate the curative role of semaglutide's against cisplatin- induced cardiotoxicity and its relation to mitochondrial functions, dynamics, biogenesis, apoptosis, and redox status pathways. The study included 30 male rats divided into three groups: control, cisplatin-induced cardiotoxicity, and cisplatin-induced cardiotoxicity treated with semaglutide. At the end of the experiment heart index, serum cardiotoxicity markers, SOD, GPX activities and H2 O2 level were estimated. Mitochondrial transmembrane potential, complex I and citrate synthase enzyme activities, ATP level, Mfn2 in addition to PGC-1 α levels were assessed as biogenesis markers. Mitophagy markers PINK1 and Parkin mRNA gene expression were estimated. Histopathological examination of cardiac muscles of all studied groups and immunoassay of P53 and caspase 3 in cardiac tissue were examined to assess apoptosis. Cisplatin has disturbed mitochondrial function and dynamics, dysregulate redox status and induced mitophagy and apoptosis, in the other hand semaglutide treatment has normalized dysregulated mitochondrial function and dynamics, redox status and suppressed mitophagy and apoptosis. Semaglutide has ameliorative effect against cisplatin- induced cardiotoxicity via modulation of mitochondrial functions, dynamics, biogenesis, apoptosis, and redox status pathways.


Subject(s)
Cardiotoxicity , Cisplatin , Humans , Rats , Male , Animals , Cisplatin/pharmacology , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Apoptosis
8.
Int J Mol Sci ; 23(23)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36498902

ABSTRACT

Doxorubicin (DOX) is an anticancer antibiotic which has various effects in human cancers. It is one of the commonly known causes of drug-induced nephrotoxicity, which results in acute renal injury. Adrenomedullin (ADM), a vasodilator peptide, is widely distributed in many tissues and has potent protective effects. Therefore, the current study aimed to examine the protective potential mechanisms of ADM against DOX-induced nephrotoxicity. A total of 28 male Wistar rats were randomized into four groups: control group, doxorubicin group (15 mg/kg single intraperitoneal injection of DOX), adrenomedullin + doxorubicin group (12 µg/kg/day intraperitoneal injection of ADM) 3 days prior to DOX injection and continuing for 14 days after the model was established, and adrenomedullin group. Kidney function biomarkers, oxidative stress markers, and inflammatory mediators (TNF-α, NLRP3, IL-1ß, and IL-18) were assessed. The expressions of gasdermin D and ASC were assessed by real-time PCR. Furthermore, the abundances of caspase-1 (p20), Bcl-2, and Bax immunoreactivity were evaluated. ADM administration improved the biochemical parameters of DOX-induced nephrotoxicity, significantly reduced oxidative damage markers and inflammatory mediators, and suppressed both apoptosis and pyroptosis. These results were confirmed by the histopathological findings and revealed that ADM's antioxidant, anti-inflammatory, anti-apoptotic, and anti-pyroptotic properties may have prospective applications in the amelioration of DOX-induced nephrotoxicity.


Subject(s)
Adrenomedullin , Renal Insufficiency , Animals , Male , Rats , Adrenomedullin/pharmacology , Apoptosis , Doxorubicin/toxicity , Inflammation , Inflammation Mediators , Oxidative Stress , Pyroptosis , Rats, Wistar , Renal Insufficiency/chemically induced , Renal Insufficiency/drug therapy
9.
Neurochem Res ; 47(6): 1664-1678, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35235140

ABSTRACT

Geraniol (GE), an important ingredient in several essential oils, displayed pleiotropic biological activities through targeting multiple signaling cascades. In the current study, we aimed to examine the protective effect of GE on D-galactose (D-gal) induced cognitive impairment and explore the underlying mechanisms. Forty male Wistar rats (8 weeks old) were randomly categorized into 4 groups; Group I (saline + vehicle [edible oil]), group II (saline + geraniol) (100 mg/kg/day orally), group III (D-galactose) (100 mg/kg/day subcutaneously injected), and group IV (D-galactose + geraniol). Behavioral impairments were evaluated. Brain levels of malondialdehyde (MDA) and reduced glutathione (GSH) as well as superoxide dismutase (SOD) and acetylcholinesterase (AchE) activities were estimated. The levels of inflammatory markers [tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6, and nuclear factor kappa beta (NF-kß)], endoplasmic reticulum stress sensors [inositol requiring protein 1(IRE1) and protein kinase RNA-like endoplasmic reticulum kinase (PERK)], brain-derived neurotrophic factor (BDNF), and mitogen-activated protein kinases (MAPK) pathway were measured by ELISA. Also, hippocampal histopathological assessment and immunohistochemical analysis of glial fibrillary acidic protein (GFAP) and caspase-3 were performed. Glucose regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) mRNA expression and protein levels were assessed. GE effectively ameliorated aging-related memory impairment through increasing GSH, BDNF, Ach levels, and SOD activity. Additionally, GE treatment caused a decrease in the levels of MDA, inflammatory mediators, and ER stress sensors as well as the AchE activity together with concomitant down-regulation of GRP78 and CHOP mRNA expression. Moreover, GE improved neuronal architecture and rat's spatial memory; this is evidenced by the shortened escape latency and increased platform crossing number. Therefore, GE offers a unique pharmacological approach for aging-associated neurodegenerative disorders.


Subject(s)
Brain-Derived Neurotrophic Factor , Galactose , Acetylcholinesterase , Acyclic Monoterpenes , Animals , Galactose/toxicity , Male , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/pathology , Oxidative Stress , RNA, Messenger , Rats , Rats, Wistar , Superoxide Dismutase
10.
Redox Rep ; 27(1): 70-78, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35285425

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) signifies a frequent serious diabetic complication influencing retinal structure and function. Dysregulation of lncRNAs drives a wide array of human diseases especially diabetes; thus, we aimed to study lncRNA HIF1A-AS2 role and its interplay with hypoxia, oxidative stress (OS), and angiogenesis in DR. MATERIALS AND METHODS: 60 DM patients in addition to 15 healthy subjects. were enrolled. LncRNA HIF1A-AS2 mRNA relative gene expression was assessed. Hypoxia inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), mitogen activated protein kinase (MAPK), and endoglin levels were assessed. Detection of DNA damage using comet assay, and Redox status parameters were also detected. RESULTS: LncRNA HIF1A-AS2 expression was significantly increased in diabetic patients with the highest levels in proliferative DR patients. Moreover, HIFα, VEGF, MAPK, and Endogolin levels were significantly higher in the diabetic patients compared to control group with the highest levels in in proliferative DR patients. Significant DNA damage in comet assay was observed to be the highest in this group. CONCLUSION: We observed for the first time the imminent role of long noncoding RNA HIF1A-AS2 in DR throughout its stages and its interplay with hypoxia, OS, and angiogenesis via MAPK/VEGF-dependent pathway.


Subject(s)
Diabetes Mellitus , Diabetic Retinopathy , RNA, Long Noncoding , Diabetic Retinopathy/genetics , Humans , Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitogen-Activated Protein Kinases/metabolism , Oxidative Stress/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
11.
J Physiol Biochem ; 76(4): 573-586, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32794154

ABSTRACT

Hepatic encephalopathy (HE) is a devastating neuropsychiatric presentation of the advanced hepatic insufficiency. It is associated with high morbidity and mortality. Aquaporin-4 (AQP4), the principal astrocyte water channel, is primarily involved in brain edema development. Ulinastatin (ULI) is a potent protease inhibitor, extracted from fresh human urine. We hypothesized that ULI could be neuroprotective in acute HE through molecular targeting of brain AQP4, which is known to be upregulated in HE. To induce acute liver failure (ALF), the rats were acutely intoxicated with thioacetamide (TAA). Animals were randomized into HE- and ULI-treated HE groups, with control normal group. Total bilirubin, albumin, serum aminotransferases, and serum/brain ammonia/proinflammatory cytokines, blood-brain barrier (BBB) integrity/tight junction proteins, brain water content, and neurological scores were assessed. Additionally, brain AQP4 and α-Syntrophin mRNA expression and protein levels were evaluated by quantitative real-time PCR and enzyme-linked immunosorbent assay, respectively. Brain and liver tissues were stripped and processed for further microscopic and histological analyses. ULI exerted potent dual neuro/hepato protective potential, improved neurological score, animals' survival, ameliorated brain edema, probably via anti-inflammatory activity, preserved BBB integrity, down-regulated AQP4 expression, and membrane polarization by decreased α-syntrophin level, with rescued brain bioenergetics. ULI could be tooled as a possible therapeutic option in HE in ALF.Graphical abstract The possible ULI mediated protection in TAA-induced HE rat model.


Subject(s)
Aquaporin 4/metabolism , Glycoproteins , Hepatic Encephalopathy/drug therapy , Trypsin Inhibitors , Animals , Glycoproteins/administration & dosage , Glycoproteins/pharmacology , Male , Molecular Targeted Therapy , Rats , Trypsin Inhibitors/administration & dosage , Trypsin Inhibitors/pharmacology
12.
Mol Biol Rep ; 47(6): 4109-4116, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32424522

ABSTRACT

BACKGROUND: The incidence of obesity-related asthma has shown a remarkable increase. OBJECTIVES: We aimed to explore the role of heat shock protein 72 (Hsp72) and receptor for advanced glycation end products (RAGE) axis with its downstream signaling in the pathogenesis of obesity-related asthma. METHODS: We enrolled a total of 55 subjects and divided them into three groups. Groups I and II included healthy, normal weight (n = 15) and obese (n = 15) subjects, respectively. Twenty-five obese asthmatics (group III) were subdivided into group IIIa (10 patients with mild to moderate asthma) and group IIIb (15 patients with severe asthma). High mobility group box 1 (HMGB1), interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), and urinary Hsp72 were immunoassayed. Hydrogen peroxide (H2O2) and free fatty acids (FFAs) levels were photometrically measured. RAGE mRNA expression was relatively quantified by real-time PCR. RESULTS: We found significant elevations of serum HMGB1, IL-8, MCP1, ERK1/2, FFAs, and H2O2 levels as well as urinary Hsp72 levels in obese subjects compared to healthy control. These were more evident in patients with severe asthma (group IIIb). Multivariate regression analysis identified Hsp72 and ERK1/2 as independent predictors of bronchial asthma severity. Receiver operating characteristic (ROC) curve analysis revealed that areas under the curve (AUC) for Hsp72 and ERK1/2 were 0.991 and 0.981, respectively, which denotes a strong predictive value for identifying the severity of bronchial asthma in obese patients. CONCLUSION: The current study highlights the role of Hsp72 and HMGB1/RAGE/ERK1/2 signaling cascade in the pathogenesis of bronchial asthma and its link to obesity, which could be reflected on monitoring, severity grading, and management of this disease.


Subject(s)
Antigens, Neoplasm/blood , Asthma/blood , HMGB1 Protein/blood , Heat-Shock Proteins/blood , MAP Kinase Signaling System , Mitogen-Activated Protein Kinases/blood , Molecular Chaperones/blood , Obesity/blood , Adult , Asthma/immunology , Asthma/urine , Case-Control Studies , Chemokine CCL2/blood , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Female , HMGB1 Protein/urine , Heat-Shock Proteins/urine , Humans , Hydrogen Peroxide/blood , Hydrogen Peroxide/metabolism , Interleukin-8/blood , Male , Middle Aged , Molecular Chaperones/urine , Obesity/immunology , Obesity/urine , Receptor Cross-Talk
13.
Mol Biol Rep ; 47(1): 247-259, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31621018

ABSTRACT

Permethrin (PER), the prevalent synthetic pyrethroid, was reported to have genotoxic effects along with male reproductive organs impairment. Matrine, the Chinese herb chief alkaloid constituent, is used extensively owing to its recognized pharmacological properties. The study included 30 rats allocated equally into three groups; Group I: Control group, Group II: PER group and Group III: Matrine treated PER group. All groups were subjected to the measurement of Steroidogenic acute regulatory (StAR) gene expression by PCR technique while testosterone, phosphorylated Extracellular signal-regulated Kinase 1/2 (p-ERK1/2) and Cyclooxygenase 2 (COX-2) levels were assessed by ELISA technique. Malondialdehyde (MDA), total antioxidant capacity (TAC) and glutathione peroxidase (GPx) were also detected spectrophotometrically in addition to assessment of DNA fragmentation. Testicular histological structure as well as sperm count and morphology were studied. Matrine improved testicular toxicity evidenced by significant upregulation of StAR gene expression, elevation of testosterone level and significant decrease of p-ERK1/2 and COX-2 levels. Moreover, enhancements of the antioxidant status together with improvement of the histological findings were observed. These findings could pave the way for matrine to be used as a promising therapeutic agent in treatment of PER toxicity.


Subject(s)
Alkaloids/metabolism , Phosphoproteins/metabolism , Quinolizines/metabolism , Testis/drug effects , Alkaloids/pharmacology , Animals , Antioxidants/metabolism , Cyclooxygenase 2/metabolism , Glutathione Peroxidase/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Malondialdehyde/analysis , Permethrin/adverse effects , Permethrin/toxicity , Phosphoproteins/genetics , Quinolizines/pharmacology , Rats , Rats, Wistar , Signal Transduction , Spermatozoa/cytology , Spermatozoa/drug effects , Testis/cytology , Testis/metabolism , Testosterone/analysis , Matrines
14.
Arch Biochem Biophys ; 671: 245-254, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31251923

ABSTRACT

Polycystic ovary syndrome (PCOS) is the most common endorinopathy in fertile women with heterogeneous reproductive and metabolic phenotypes and unknown etiology. This study was undertaken to investigate the beneficial effect of selenium in management of letrozole induced PCOS and its role in modulating mitochondrial dynamics, and its associated signals. Twenty four adult female rats were enrolled and randomly divided into four equal groups; control group received 0.5% w/v carboxymethyl cellulose (CMC); PCOS group received letrozole (1 mg/kg, daily) in 0.5% CMC for 21 days. From day 22 to day 36, after letrozole PCOS induction, the (PCOS +Metformin) group received metformin (2 mg/kg, daily) while (PCOS + sodium selenite) group received sodium selenite (0.1 mg/kg, daily). All doses were given via oral gavage. At the study end, serum hormone levels, lipid profile and HOMA-IR were assessed. Ovaries were dissected, used for histopathological evaluation, immunohistochemical detection of B-cell lymphoma-2 (Bcl-2), and its associated X protein (Bax) expression, measurement of redox status, mitochondrial dynamics markers and citrate synthase (CS) activity. Furthermore Mitofusins 2 (Mfn2) and dynamin related protein 1 (Drp1) mRNA expression was assessed by real time PCR. Selenium treatment of PCOS rats succeeded, comparable to metformin, to greatly improve the PCOS associated endocrine and metabolic phenotypes and histopathological changes, mostly through modulating mitochondrial dynamics, anti-apoptotic action, alleviating oxidative stress and mitochondrial dysfunction. So, selenium could provide a novel therapeutic strategy for PCOS.


Subject(s)
Mitochondria/metabolism , Polycystic Ovary Syndrome/drug therapy , Sodium Selenite/therapeutic use , Animals , Blood Glucose/metabolism , Citrate (si)-Synthase/metabolism , Estradiol/metabolism , Female , Insulin/metabolism , Letrozole , Lipid Metabolism/drug effects , Ovary/pathology , Oxidation-Reduction/drug effects , Polycystic Ovary Syndrome/chemically induced , Progesterone/metabolism , Rats , Testosterone/metabolism
15.
Chem Biol Interact ; 306: 47-53, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30974099

ABSTRACT

Necroptosis is suggested to have an important role in the pathogenesis of rhabdomyolysis induced acute kidney injury (AKI). In this study, the renoprotective effect of diacerein on glycerol-induced AKI was investigated. Twenty four male albino rats were included in this study and divided into four groups: (group I) saline control group, (group II) glycerol-treated group, (groups III&IV) diacerein + glycerol -treated groups (25 and 50 mg/kg/day) respectively. Renal malondialdehyde (MDA) level in addition to catalase and heme oxygenase (HO) activities were estimated. Comet assay and histopathological changes were evaluated. The levels of pro-apoptotic Bcl-2-associated X (Bax) protein, tumor necrosis factor alpha (TNF-α) and receptor-interacting serine/threonine-protein kinases 3 (RIPK3) were measured by ELISA. RIPK3 and mixed lineage kinase domain-like pseudokinase (MLKL) mRNA expression were assessed by real time PCR. Glycerol treatment caused significant renal histological abnormalities and functional impairment (increased urea and creatinine). Increased levels of renal MDA with concomitant decrease in renal catalase activity and significant DNA damage in comet assay were observed. High expression of RIPK3 and MLKL in the glycerol-treated group with marked elevation of Bax, TNF-α and RIPK3 levels and HO-1 activity were also documented. Diacerein treatment dependently attenuated glycerol induced structural and functional changes in kidney and significantly elicit reduction of renal tissue oxidative damage whereas it decreased renal expression of RIPK3 and MLKL, and decreased Bax, TNF-α and RIPK3 levels and HO-1 activity. CONCLUSION: These results demonstrated that diacerein might have potential application in the amelioration of AKI via its anti-oxidant, anti-inflammatory, anti-apoptotic and anti-necroptotic effects.


Subject(s)
Acute Kidney Injury/prevention & control , Anthraquinones/pharmacology , Apoptosis/drug effects , Glycerol/pharmacology , Inflammation/prevention & control , Necrosis/prevention & control , Oxidative Stress/drug effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/pathology , Animals , DNA Damage/drug effects , Glycerol/administration & dosage , Inflammation/chemically induced , Inflammation/pathology , Male , Necrosis/chemically induced , Necrosis/pathology , Rats , Rats, Wistar
16.
J Cell Biochem ; 120(9): 14476-14485, 2019 09.
Article in English | MEDLINE | ID: mdl-31002427

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) signifies a frequently life-threatening condition influencing kidney structure and function. Despite its irrefutable importance, its exact pathogenesis is not completely clarified. However, CKD is known to be associated with accumulated uremic toxins/metabolites, interstitial fibrosis, and systemic inflammation. So we aimed to investigate the role of microbiota-dependent metabolite trimethylamine N-oxide (TMAO), transforming growth factor ß (TGFß)/SMAD signaling, and inflammasome activation in CKD pathogenesis through its different stages. SUBJECTS AND METHODS: Eighty patients with CKD of stages 2 to 4 in addition 15 healthy control subjects were enrolled. SMAD3 and nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) messenger RNA (mRNA) expressions from whole blood were assessed by quantitative real-time polymerase chain reaction (RT-PCR). Serum TGF-ß1 and interleukin-1ß (IL-1ß) levels were estimated by the enzyme-linked immunosorbent assay. Plasma and urinary TMAO levels were measured. Oxidative stress markers were also assessed. RESULTS: SMAD3 and NLRP3 mRNA expressions were significantly upregulated in patients with CKD. Likewise, serum TGF-ß1 and IL-1ß levels were significantly elevated in patients with CKD, with increase in plasma and urinary TMAO levels and altered redox status throughout different CKD stages. CONCLUSION: The study documented that TMAO could be used as a reliable biomarker to evaluate CKD progression; being linked to TGF-ß/SMAD signaling, NLRP3 inflammasome activation as well as being a noninvasive applicable technique.


Subject(s)
Interleukin-1beta/blood , Methylamines/analysis , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Renal Insufficiency, Chronic/microbiology , Smad3 Protein/genetics , Transforming Growth Factor beta1/blood , Adult , Case-Control Studies , Disease Progression , Female , Humans , Male , Methylamines/blood , Methylamines/urine , Microbiota , Middle Aged , Oxidative Stress , Renal Insufficiency, Chronic/metabolism , Signal Transduction , Up-Regulation
17.
J Cell Biochem ; 120(5): 7679-7688, 2019 May.
Article in English | MEDLINE | ID: mdl-30417426

ABSTRACT

Alcoholic liver disease (ALD) encompasses a variety of liver injuries with various underlying mechanisms but still no effective treatment. So we aimed to monitor the influence of simvastatin on alcohol-induced liver injury and elucidate the underlying mechanisms of its cytoprotective effect. Thirty male albino rats were randomly divided into five equal groups. Group 1 (control): received a standard diet; group 2: received simvastatin (10 mg kg-1 day -1 ) once a day orally for 8 weeks; group 3: received 20% ethanol (7.9 g kg -1 day -1 ) daily orally for 8 weeks; group 4: received 20% ethanol along with same simvastatin dose daily for 8 weeks; group 5: received 20% ethanol orally for 8 weeks then received the same simvastatin dose for the next 8 weeks. Serum alanine aminotransferase, aspartate aminotransferase, total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol were measured. Liver tissue malondialdehyde, reduced glutathione levels, and superoxide dismutase activity were estimated. B-cell lymphoma 2 and C/EBP homologous protein levels were evaluated by enzyme linked immunosorbent assay (ELISA). Light chain 3-II and peroxisome proliferation-activated receptor gamma messenger RNA expression was assessed by real-time polymerase chain reaction. Immunohistochemical staining was performed using anti-rat tumor necrosis factor-alpha antibody. Our results revealed that simvastatin treatment was able to ameliorate alcohol-induced liver damage; the improved biochemical data were confirmed by histopathological evaluation. Simvastatin being an autophagy inducer was able to prevent and reverse alcohol-induced liver changes via induction of autophagy, attenuation of oxidative stress, inflammation, and endoplasmic reticulum stress-induced apoptosis. Therefore, our findings suggest that treatment with simvastatin may be a useful approach in the management strategy of ALD.

18.
J Popul Ther Clin Pharmacol ; 26(3): e1-e8, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31904200

ABSTRACT

BACKGROUND: Necrotizing enterocolitis (NEC) is a frequent serious disease of the digestive system in neonates. It is considered as an important cause of serious neonatal complication and death. Therefore, its early suspicion and proper management are important. AIM: Early and sensitive detection of neonatal NEC through determination of levels of fecal calprotectin (FCP), serum levels of procalcitonin (PCT), high-sensitivity C-reactive protein (hs-CRP), epithelial neutrophil activating peptide-78 (ENA-78), and interleukin 18 (IL-18). METHOD: This prospective case control study was conducted in Tanta University Hospital from June 2016 to March 2018. The study included 20 healthy neonates (control group) and 20 NEC newborn patients. They were all subjected to the measurement of levels of FCP and serum levels of hs-CRP, PCT, ENA-78, IL-18, Malondialdehyde (MDA), and total antioxidant capacity (TAC). Receiver operating characteristic (ROC) curve analysis was conducted for FCP, ENA-78, PCT, hs-CRP, and IL-18. RESULTS: The study found a detectable increase in FCP level and serum levels of hs-CRP, PCT, ENA-78, IL-18, and MDA in NEC group in comparison to their levels in the control group. Also, it found a detectable decline in the levels of TAC in comparison to its level in the control group. CONCLUSION: FCP, ENA-78, and PCT can be considered as early markers for diagnosis of NEC.


Subject(s)
Chemokine CXCL5/blood , Enterocolitis, Necrotizing/diagnosis , Leukocyte L1 Antigen Complex/metabolism , Procalcitonin/metabolism , Biomarkers/metabolism , Case-Control Studies , Enterocolitis, Necrotizing/physiopathology , Feces/chemistry , Female , Humans , Infant, Newborn , Male , Pilot Projects , Prospective Studies
19.
Diabetes Metab Syndr ; 12(6): 1065-1070, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30168428

ABSTRACT

BACKGROUND: Diabetic foot ulceration (DFU) is a serious diabetic complication that can progress to amputation and since SIRT1 regulates glucose metabolism, inflammation, and oxidative stress which are the major contributors in diabetic complications, So we aimed to discuss its role as an epigenetic biomarker in DFU and highlight its link to oxidative stress and inflammatory cytokines. METHOD: 60 DM patients were enrolled in the study, 30 without DFU and 30 with DFU in addition to 15 healthy subjects (control group). SIRT1 mRNA relative gene expression was assessed. Catalase activity, advanced glycation end products (AGEs), tumor necrosis factor alpha (TNFα), interleukin 6 (IL-6) and High mobility group box1 (HMGB1) levels were measured. DNA fragmentation was also performed. RESULT: SIRT1 expression and catalase activity were significantly decreased in diabetic patients compared to control group with the lowest levels in DFU patients, TNFα, IL-6, HMGB 1 and AGEs levels were significantly higher in the diabetic patients compared to control group with the highest levels in DFU patients. DNA fragmentation was more profound in DFU patients. CONCLUSION: The study revealed that SIRT1 mRNA expression can be considered as a novel biomarker in DFU being a major player involved in its pathogenesis.


Subject(s)
Diabetic Foot/blood , HMGB1 Protein/blood , Sirtuin 1/blood , Case-Control Studies , Catalase/blood , Cytokines/blood , DNA Fragmentation , Diabetic Foot/genetics , Epigenesis, Genetic , Female , Humans , Male , Middle Aged , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL