Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Brain Behav Immun ; 118: 275-286, 2024 May.
Article in English | MEDLINE | ID: mdl-38447884

ABSTRACT

xCT (Slc7a11), the specific subunit of the cystine/glutamate antiporter system xc-, is present in the brain and on immune cells, where it is known to modulate behavior and inflammatory responses. In a variety of cancers -including pancreatic ductal adenocarcinoma (PDAC)-, xCT is upregulated by tumor cells to support their growth and spread. Therefore, we studied the impact of xCT deletion in pancreatic tumor cells (Panc02) and/or the host (xCT-/- mice) on tumor burden, inflammation, cachexia and mood disturbances. Deletion of xCT in the tumor strongly reduced tumor growth. Targeting xCT in the host and not the tumor resulted only in a partial reduction of tumor burden, while it did attenuate tumor-related systemic inflammation and prevented an increase in immunosuppressive regulatory T cells. The latter effect could be replicated by specific xCT deletion in immune cells. xCT deletion in the host or the tumor differentially modulated neuroinflammation. When mice were grafted with xCT-deleted tumor cells, hypothalamic inflammation was reduced and, accordingly, food intake improved. Tumor bearing xCT-/- mice showed a trend of reduced hippocampal neuroinflammation with less anxiety- and depressive-like behavior. Taken together, targeting xCT may have beneficial effects on pancreatic cancer-related comorbidities, beyond reducing tumor burden. The search for novel and specific xCT inhibitors is warranted as they may represent a holistic therapy in pancreatic cancer.


Subject(s)
Neuroinflammatory Diseases , Pancreatic Neoplasms , Mice , Animals , Brain , Inflammation , Hippocampus
2.
Mol Neurobiol ; 61(4): 2165-2175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37864765

ABSTRACT

There are currently no drugs that meaningfully slow down the progression of Huntington's disease (HD). Moreover, drug candidates against a single molecular target have not had significant success. Therefore, a different approach to HD drug discovery is needed. Previously we showed that the flavonol fisetin is efficacious in mouse and fly models of HD (Hum. Mol. Gen. 20:261, 2011). It is also effective in animal models of Alzheimer's disease (AD), ischemic stroke, and the CNS complications of diabetes, all of which share some pathological features with HD. Potent derivatives of fisetin with improved pharmacology were made that maintain its multiple biological activities (J. Med. Chem. 55:378, 2012). From 160 synthetic fisetin derivatives, one, CMS121, was selected for further study in the context of HD based on pharmacological parameters and its efficacy in animal models of AD. Both R6/2 and YAC128 mouse models of HD were used in these studies. We examined motor function using multiple assays as well as survival. In the R6/2 mice, we also looked at the effects of CMS121 on striatal gene expression. In both models, we found a slowing of motor dysfunction and an increase in median life span. Interestingly, in the YAC128 mice, the effects on the slowing in motor function loss became increasingly more pronounced as the mice aged. CMS121 also reduced HD-driven changes in the expression of genes associated with the proteasome and oxidative phosphorylation. Overall, these results suggest that CMS121 could provide some benefits for HD patients, particularly with regard to increasing health span.


Subject(s)
Huntington Disease , Mice , Humans , Animals , Aged , Huntington Disease/genetics , Mice, Transgenic , Corpus Striatum/metabolism , Neostriatum/metabolism , Disease Models, Animal , Disease Progression
3.
Blood Cancer J ; 13(1): 188, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110349

ABSTRACT

Acute Myeloid Leukemia (AML) is a heterogeneous disease with limited treatment options and a high demand for novel targeted therapies. Since myeloid-related protein S100A9 is abundantly expressed in AML, we aimed to unravel the therapeutic impact and underlying mechanisms of targeting both intracellular and extracellular S100A9 protein in AML cell lines and primary patient samples. S100A9 silencing in AML cell lines resulted in increased apoptosis and reduced AML cell viability and proliferation. These therapeutic effects were associated with a decrease in mTOR and endoplasmic reticulum stress signaling. Comparable results on AML cell proliferation and mTOR signaling could be observed using the clinically available S100A9 inhibitor tasquinimod. Interestingly, while siRNA-mediated targeting of S100A9 affected both extracellular acidification and mitochondrial metabolism, tasquinimod only affected the mitochondrial function of AML cells. Finally, we found that S100A9-targeting approaches could significantly increase venetoclax sensitivity in AML cells, which was associated with a downregulation of BCL-2 and c-MYC in the combination group compared to single agent therapy. This study identifies S100A9 as a novel molecular target to treat AML and supports the therapeutic evaluation of tasquinimod in venetoclax-based regimens for AML patients.


Subject(s)
Calgranulin B , Leukemia, Myeloid, Acute , Humans , Calgranulin B/genetics , Calgranulin B/pharmacology , Cell Line, Tumor , Apoptosis , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , TOR Serine-Threonine Kinases/therapeutic use
4.
Biol Reprod ; 109(4): 432-449, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37531262

ABSTRACT

In vitro maturation (IVM) is an alternative assisted reproductive technology with reduced hormone-related side effects and treatment burden compared to conventional IVF. Capacitation (CAPA)-IVM is a bi-phasic IVM system with improved clinical outcomes compared to standard monophasic IVM. Yet, CAPA-IVM efficiency compared to conventional IVF is still suboptimal in terms of producing utilizable blastocysts. Previously, we have shown that CAPA-IVM leads to a precocious increase in cumulus cell (CC) glycolytic activity during cytoplasmic maturation. In the current study, considering the fundamental importance of CCs for oocyte maturation and cumulus-oocyte complex (COC) microenvironment, we further analyzed the bioenergetic profiles of maturing CAPA-IVM COCs. Through a multi-step approach, we (i) explored mitochondrial function of the in vivo and CAPA-IVM matured COCs through real-time metabolic analysis with Seahorse analyzer, and to improve COC metabolism (ii) supplemented the culture media with lactate and/or super-GDF9 (an engineered form of growth differentiation factor 9) and (iii) reduced culture oxygen tension. Our results indicated that the pre-IVM step is delicate and prone to culture-related disruptions. Lactate and/or super-GDF9 supplementations failed to eliminate pre-IVM-induced stress on COC glucose metabolism and mitochondrial respiration. However, when performing pre-IVM culture under 5% oxygen tension, CAPA-IVM COCs showed similar bioenergetic profiles compared to in vivo matured counterparts. This is the first study providing real-time metabolic analysis of the COCs from a bi-phasic IVM system. The currently used analytical approach provides the quantitative measures and the rational basis to further improve IVM culture requirements.

5.
Cell Death Dis ; 14(8): 536, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604805

ABSTRACT

Acinar cell dedifferentiation is one of the most notable features of acute and chronic pancreatitis. It can also be the initial step that facilitates pancreatic cancer development. In the present study, we further decipher the precise mechanisms and regulation using primary human cells and murine experimental models. Our RNAseq analysis indicates that, in both species, early acinar cell dedifferentiation is accompanied by multiple pathways related to cell survival that are highly enriched, and where SLC7A11 (xCT) is transiently upregulated. xCT is the specific subunit of the cystine/glutamate antiporter system xC-. To decipher its role, gene silencing, pharmacological inhibition and a knock-out mouse model were used. Acinar cells with depleted or reduced xCT function show an increase in ferroptosis relating to lipid peroxidation. Lower glutathione levels and more lipid ROS accumulation could be rescued by the antioxidant N-acetylcysteine or the ferroptosis inhibitor ferrostatin-1. In caerulein-induced acute pancreatitis in mice, xCT also prevents lipid peroxidation in acinar cells. In conclusion, during stress, acinar cell fate seems to be poised for avoiding several forms of cell death. xCT specifically prevents acinar cell ferroptosis by fueling the glutathione pool and maintaining ROS balance. The data suggest that xCT offers a druggable tipping point to steer the acinar cell fate in stress conditions.


Subject(s)
Ferroptosis , Pancreatitis , Humans , Animals , Mice , Acinar Cells , Acute Disease , Ferroptosis/genetics , Pancreatitis/genetics , Reactive Oxygen Species , Glutamic Acid
6.
Biomolecules ; 13(8)2023 07 28.
Article in English | MEDLINE | ID: mdl-37627248

ABSTRACT

Alterations in the activity of the regulator of cell metabolism AMP-activated protein kinase (AMPK) have been reported in motor neurons from patients and animal models of amyotrophic lateral sclerosis (ALS). Considering the key role played by astrocytes in modulating energy metabolism in the nervous system and their compromised support towards neurons in ALS, we examined whether a putative alteration in AMPK expression/activity impacted astrocytic functions such as their metabolic plasticity and glutamate handling capacity. We found a reduced expression of AMPK mRNA in primary cultures of astrocytes derived from transgenic rats carrying an ALS-associated mutated superoxide dismutase (hSOD1G93A). The activation of AMPK after glucose deprivation was reduced in hSOD1G93A astrocytes compared to non-transgenic. This was accompanied by a lower increase in ATP levels and increased vulnerability to this insult, although the ATP production rate did not differ between the two cell types. Furthermore, soliciting the activity of glutamate transporters was found to induce similar AMPK activity in these cells. However, manipulation of AMPK activity did not influence glutamate transport. Together, these results suggest that the altered AMPK responsiveness in ALS might be context dependent and may compromise the metabolic adaptation of astrocytes in response to specific cellular stress.


Subject(s)
Amyotrophic Lateral Sclerosis , Rats , Animals , Amyotrophic Lateral Sclerosis/genetics , Astrocytes , AMP-Activated Protein Kinases , Motor Neurons , Glutamic Acid , Superoxide Dismutase-1/genetics , Adenosine Triphosphate
7.
Methods Mol Biol ; 2644: 237-245, 2023.
Article in English | MEDLINE | ID: mdl-37142926

ABSTRACT

The neutral red uptake (NRU) assay is a cell viability assay that can be used for the assessment of compound-induced cytotoxicity. It is based on the ability of living cells to incorporate neutral red, a weak cationic dye, in lysosomes. The quantification of xenobiotic-induced cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red when compared to cells exposed to corresponding vehicle controls. The NRU assay is mainly used for hazard assessment in in vitro toxicology applications. Hence, this method has been incorporated in regulatory recommendations such as the OECD test guideline TG 432, in which an in vitro 3T3-NRU-phototoxicityassay is described to assess the cytotoxicity of compounds in the presence or absence of UV light.This book chapter describes a detailed protocol to carry out the NRU assay using the human hepatoma cell line HepG2, which is frequently employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetylsalicylic acid is assessed.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Neutral Red/metabolism , Hepatocytes/metabolism , Cell Line , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Cell Survival
8.
J Pathol ; 260(2): 112-123, 2023 06.
Article in English | MEDLINE | ID: mdl-36807305

ABSTRACT

Multiple myeloma (MM) remains an incurable haematological malignancy despite substantial advances in therapy. Hypoxic bone marrow induces metabolic rewiring in MM cells contributing to survival and drug resistance. Therefore, targeting metabolic pathways may offer an alternative treatment option. In this study, we repurpose two FDA-approved drugs, syrosingopine and metformin. Syrosingopine was used as a dual inhibitor of monocarboxylate transporter 1 and 4 (MCT1/4) and metformin as an inhibitor for oxidative phosphorylation (OXPHOS). Anti-tumour effects were evaluated for single agents and in combination therapy. Survival and expression data for MCT1/MCT4 were obtained from the Total Therapy 2, Mulligan, and Multiple Myeloma Research Foundation cohorts. Cell death, viability, and proliferation were measured using Annexin V/7-AAD, CellTiterGlo, and BrdU, respectively. Metabolic effects were assessed using Seahorse Glycolytic Rate assays and LactateGlo assays. Differential protein expression was determined using western blotting, and the SUnSET method was implemented to quantify protein synthesis. Finally, the syngeneic 5T33MMvv model was used for in vivo analysis. High-level expression of MCT1 and MCT4 both correlated with a significantly lower overall survival of patients. Lactate production as well as MCT1/MCT4 expression were significantly upregulated in hypoxia, confirming the Warburg effect in MM. Dual inhibition of MCT1/4 with syrosingopine resulted in intracellular lactate accumulation and reduced cell viability and proliferation. However, only at higher doses (>10 µm) was syrosingopine able to induce cell death. By contrast, combination treatment of syrosingopine with metformin was highly cytotoxic for MM cell lines and primary patient samples and resulted in a suppression of both glycolysis and OXPHOS. Moreover, pathway analysis revealed an upregulation of the energy sensor p-AMPKα and more downstream a reduction in protein synthesis. Finally, the combination treatment resulted in a significant reduction in tumour burden in vivo. This study proposes an alternative combination treatment for MM and provides insight into intracellular effects. © 2023 The Pathological Society of Great Britain and Ireland.


Subject(s)
Antineoplastic Agents , Metformin , Multiple Myeloma , Humans , Metformin/pharmacology , Multiple Myeloma/metabolism , Antineoplastic Agents/pharmacology , Lactic Acid/metabolism , Monocarboxylic Acid Transporters/metabolism , Cell Line, Tumor
9.
J Pathol ; 259(1): 69-80, 2023 01.
Article in English | MEDLINE | ID: mdl-36245401

ABSTRACT

While multi-drug combinations and continuous treatment have become standard for multiple myeloma, the disease remains incurable. Repurposing drugs that are currently used for other indications could provide a novel approach to improve the therapeutic efficacy of standard multiple myeloma treatments. Here, we assessed the anti-tumor effects of cardiac drugs called ß-blockers as a single agent and in combination with commonly used anti-myeloma therapies. Expression of the ß2 -adrenergic receptor correlated with poor survival outcomes in patients with multiple myeloma. Targeting the ß2 -adrenergic receptor (ß2 AR) using either selective or non-selective ß-blockers reduced multiple myeloma cell viability, and induced apoptosis and autophagy. Blockade of the ß2 AR modulated cancer cell metabolism by reducing the mitochondrial respiration as well as the glycolytic activity. These effects were not observed by blockade of ß1 -adrenergic receptors. Combining ß2 AR blockade with the chemotherapy drug melphalan or the proteasome inhibitor bortezomib significantly increased apoptosis in multiple myeloma cells. These data identify the therapeutic potential of ß2 AR-blockers as a complementary or additive approach in multiple myeloma treatment and support the future clinical evaluation of non-selective ß-blockers in a randomized controlled trial. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/drug therapy , Receptors, Adrenergic, beta-1/metabolism , Receptors, Adrenergic, beta-1/therapeutic use , Signal Transduction , Bortezomib/pharmacology , Bortezomib/therapeutic use , Apoptosis
10.
Cells ; 11(11)2022 05 31.
Article in English | MEDLINE | ID: mdl-35681495

ABSTRACT

Energy homeostasis in the central nervous system largely depends on astrocytes, which provide metabolic support and protection to neurons. Astrocytes also ensure the clearance of extracellular glutamate through high-affinity transporters, which indirectly consume ATP. Considering the role of the AMP-activated protein kinase (AMPK) in the control of cell metabolism, we have examined its implication in the adaptation of astrocyte functions in response to a metabolic stress triggered by glucose deprivation. We genetically modified the astrocyte-like C6 cell line to silence AMPK activity by overexpressing a dominant negative mutant of its catalytic subunit. Upon glucose deprivation, we found that C6 cells maintain stable ATP levels and glutamate uptake capacity, highlighting their resilience during metabolic stress. In the same conditions, cells with silenced AMPK activity showed a reduction in motility, metabolic activity, and ATP levels, indicating that their adaptation to stress is compromised. The rate of ATP production remained, however, unchanged by AMPK silencing, suggesting that AMPK mostly influences energy consumption during stress conditions in these cells. Neither AMPK modulation nor prolonged glucose deprivation impaired glutamate uptake. Together, these results indicate that AMPK contributes to the adaptation of astrocyte metabolism triggered by metabolic stress, but not to the regulation of glutamate transport.


Subject(s)
Glioma , Glucose , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Humans
11.
Mol Psychiatry ; 27(4): 2355-2368, 2022 04.
Article in English | MEDLINE | ID: mdl-35181756

ABSTRACT

The cystine/glutamate antiporter system xc- has been identified as the major source of extracellular glutamate in several brain regions as well as a modulator of neuroinflammation, and genetic deletion of its specific subunit xCT (xCT-/-) is protective in mouse models for age-related neurological disorders. However, the previously observed oxidative shift in the plasma cystine/cysteine ratio of adult xCT-/- mice led to the hypothesis that system xc- deletion would negatively affect life- and healthspan. Still, till now the role of system xc- in physiological aging remains unexplored. We therefore studied the effect of xCT deletion on the aging process of mice, with a particular focus on the immune system, hippocampal function, and cognitive aging. We observed that male xCT-/- mice have an extended lifespan, despite an even more increased plasma cystine/cysteine ratio in aged compared to adult mice. This oxidative shift does not negatively impact the general health status of the mice. On the contrary, the age-related priming of the innate immune system, that manifested as increased LPS-induced cytokine levels and hypothermia in xCT+/+ mice, was attenuated in xCT-/- mice. While this was associated with only a very moderate shift towards a more anti-inflammatory state of the aged hippocampus, we observed changes in the hippocampal metabolome that were associated with a preserved hippocampal function and the retention of hippocampus-dependent memory in male aged xCT-/- mice. Targeting system xc- is thus not only a promising strategy to prevent cognitive decline, but also to promote healthy aging.


Subject(s)
Amino Acid Transport System y+ , Cystine , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Cysteine , Cystine/metabolism , Glutamic Acid , Hippocampus/metabolism , Longevity , Male , Mice , Mice, Inbred C57BL
12.
Redox Biol ; 36: 101648, 2020 09.
Article in English | MEDLINE | ID: mdl-32863221

ABSTRACT

The oxidative degradation of lipids has been shown to be implicated in the progression of several neurodegenerative diseases and modulating lipid peroxidation may be efficacious for treating Alzheimer's disease (AD). This hypothesis is strengthened by recent findings suggesting that oxytosis/ferroptosis, a cell death process characterized by increased lipid peroxidation, plays an important role in AD-related toxicities. CMS121 is a small molecule developed against these aspects of neurodegeneration. Here we show that CMS121 alleviates cognitive loss, modulates lipid metabolism and reduces inflammation and lipid peroxidation in the brains of transgenic AD mice. We identify fatty acid synthase (FASN) as a molecular target of CMS121 and demonstrate that modulating lipid metabolism through the inhibition of FASN protects against several AD-related toxicities. These results support the involvement of lipid peroxidation and perturbed lipid metabolism in AD pathophysiology and propose FASN as a target in AD-associated toxicities.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Animals , Cognition , Fatty Acid Synthases , Inflammation/drug therapy , Inflammation/genetics , Lipid Peroxidation , Mice , Mice, Transgenic
13.
NPJ Aging Mech Dis ; 6: 10, 2020.
Article in English | MEDLINE | ID: mdl-32884834

ABSTRACT

Calcium dysregulation often underlies pathologies associated with aging and age-associated neurodegenerative diseases. Cells express a unique pattern of Ca2+ channels and pumps geared to fulfill specific physiological requirements and there is a decline in the fidelity of these processes with age and age-associated diseases. J147 is an Alzheimer's disease (AD) drug candidate that was identified using a phenotypic screening platform based upon age-related brain toxicities that are mediated by changes in calcium metabolism. The molecular target for J147 is the α-F1-ATP synthase (ATP5A). J147 has therapeutic efficacy in multiple mouse models of AD and accelerated aging and extends life span in flies. A bioinformatics analysis of gene expression in rapidly aging SAMP8 mice during the last quadrant of their life span shows that J147 has a significant effect on ion transport pathways that are changed with aging, making their expression look more like that of younger animals. The molecular basis of these changes was then investigated in cell culture neurotoxicity assays that were the primary screen in the development of J147. Here we show that J147 and its molecular target, ATP synthase, regulate the maintenance of store-operated calcium entry (SOCE) and cell death during acute neurotoxicity.

14.
Cytotechnology ; 72(2): 247-258, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32016710

ABSTRACT

Increasing interest has been observed in the use of photobiomodulation (PBM) to enhance the proliferation of stem cells and induce their differentiation. The effects of PBM at two different wavelengths (635 and 809 nm) with three different energy densities (0.5, 1 and 2 J/cm2) on the osteogenic differentiation of adipose-derived stem cells (ADSC) were investigated. Cell viability and proliferation were evaluated by MTT and Alamar Blue assays. Osteoblast differentiation were assessed by alkaline phosphatase (ALP) activity, Alizarin red staining and reverse-transcription polymerase chain reaction (RT-PCR) for the expression of collagen type I (COL1A), ALP and osteocalcin. 635 nm and 809 nm laser irradiation had no effect on the cell viability on days 7 and 14, except for 0.5 J/cm2 group at 14th day after 635 nm irradiation (p < 0.05). Cell proliferation was not changed significantly. Mineralization was increased significantly in 809 nm laser groups but no enhancement was detected in the osteogenic differentiation by ALP activity and gene expression results. In 0.5 and 1 J/cm2 groups, ALP and COL1A expressions were down regulated at day 7 after 809 nm laser exposure. These results suggest that PBM may alter osteogenic differentiation of ADSC and increase mineralization but further investigation is needed to define adequate parameters.

15.
Elife ; 82019 11 19.
Article in English | MEDLINE | ID: mdl-31742554

ABSTRACT

Because old age is the greatest risk factor for dementia, a successful therapy will require an understanding of the physiological changes that occur in the brain with aging. Here, two structurally distinct Alzheimer's disease (AD) drug candidates, CMS121 and J147, were used to identify a unique molecular pathway that is shared between the aging brain and AD. CMS121 and J147 reduced cognitive decline as well as metabolic and transcriptional markers of aging in the brain when administered to rapidly aging SAMP8 mice. Both compounds preserved mitochondrial homeostasis by regulating acetyl-coenzyme A (acetyl-CoA) metabolism. CMS121 and J147 increased the levels of acetyl-CoA in cell culture and mice via the inhibition of acetyl-CoA carboxylase 1 (ACC1), resulting in neuroprotection and increased acetylation of histone H3K9 in SAMP8 mice, a site linked to memory enhancement. These data show that targeting specific metabolic aspects of the aging brain could result in treatments for dementia.


Subject(s)
Aging/drug effects , Alzheimer Disease/drug therapy , Brain/drug effects , Mitochondria/metabolism , Acetyl Coenzyme A/drug effects , Acetyl Coenzyme A/metabolism , Acetyl-CoA Carboxylase/genetics , Acetylation/drug effects , Aging/pathology , Alzheimer Disease/physiopathology , Animals , Brain/diagnostic imaging , Brain/pathology , Curcumin/analogs & derivatives , Curcumin/pharmacology , Humans , Memory/drug effects , Memory/physiology , Mice , Mitochondria/drug effects , Protein Processing, Post-Translational/drug effects , Signal Transduction/drug effects
16.
Arch Toxicol ; 92(8): 2517-2531, 2018 08.
Article in English | MEDLINE | ID: mdl-30008028

ABSTRACT

The utilisation of genome-wide transcriptomics has played a pivotal role in advancing the field of toxicology, allowing the mapping of transcriptional signatures to chemical exposures. These activities have uncovered several transcriptionally regulated pathways that can be utilised for assessing the perturbation impact of a chemical and also the identification of toxic mode of action. However, current transcriptomic platforms are not very amenable to high-throughput workflows due to, high cost, complexities in sample preparation and relatively complex bioinformatic analysis. Thus, transcriptomic investigations are usually limited in dose and time dimensions and are, therefore, not optimal for implementation in risk assessment workflows. In this study, we investigated a new cost-effective, transcriptomic assay, TempO-Seq, which alleviates the aforementioned limitations. This technique was evaluated in a 6-compound screen, utilising differentiated kidney (RPTEC/TERT1) and liver (HepaRG) cells and compared to non-transcriptomic label-free sensitive endpoints of chemical-induced disturbances, namely phase contrast morphology, xCELLigence and glycolysis. Non-proliferating cell monolayers were exposed to six sub-lethal concentrations of each compound for 24 h. The results show that utilising a 2839 gene panel, it is possible to discriminate basal tissue-specific signatures, generate dose-response relationships and to discriminate compound-specific and cell type-specific responses. This study also reiterates previous findings that chemical-induced transcriptomic alterations occur prior to cytotoxicity and that transcriptomics provides in depth mechanistic information of the effects of chemicals on cellular transcriptional responses. TempO-Seq is a robust transcriptomic platform that is well suited for in vitro toxicity experiments.


Subject(s)
Gene Expression Profiling/methods , Kidney/cytology , Liver/cytology , Toxicity Tests/methods , Transcriptome/drug effects , Bromates/toxicity , Cell Differentiation/drug effects , Cell Line , Cyclosporine/toxicity , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Humans , Ochratoxins/toxicity , Valproic Acid/toxicity
17.
Lasers Med Sci ; 33(7): 1591-1599, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29744752

ABSTRACT

Photobiomodulation (PBM) and photodynamic therapy (PDT) share similar mechanisms but have opposite aims. Increased levels of reactive oxygen species (ROS) in the target tissue in response to light combined photosensitizer (PS) application may lead to cell proliferation or oxidative damage depending on the ROS amount. The purpose of the present study is to investigate the effect of indocyanine green (ICG)-mediated PBM on osteoblast cells by measuring cell viability, proliferation, alkaline phosphatase (ALP) activity, mineralization, and gene expressions of three phenotypic osteoblast markers. A diode laser irradiating at 809 nm (10 W output power, 50 mW/cm2 power density) was used at 0.5, 1, and 2 J/cm2 energy densities (10, 20, and 40 s respectively) was applied following ICG incubation. No inhibitory effect was observed in cell viability and proliferation according to the (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and Alamar Blue assays. ICG-mediated PBM did not alter cell viability but increased ALP activity and enhanced mineralization of existing osteoblasts. These results were also confirmed by real-time polymerase chain reaction (RT-PCR) analysis of osteoblastic markers. PS can be combined to PBM not only to damage the malignant cells as aimed in PDT studies, but also to promote cellular activity. The findings of this in vitro study may contribute to in vivo studies and ICG-mediated PBM can have promising outcomes in bone healing and regeneration therapies in future.


Subject(s)
Indocyanine Green/pharmacology , Osteoblasts/cytology , Photochemotherapy , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation/drug effects , Humans , Osteoblasts/drug effects , Osteoblasts/metabolism , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism
18.
Front Neurosci ; 12: 214, 2018.
Article in English | MEDLINE | ID: mdl-29731704

ABSTRACT

Although nerve cell death is the hallmark of many neurological diseases, the processes underlying this death are still poorly defined. However, there is a general consensus that neuronal cell death predominantly proceeds by regulated processes. Almost 30 years ago, a cell death pathway eventually named oxytosis was described in neuronal cells that involved glutathione depletion, reactive oxygen species production, lipoxygenase activation, and calcium influx. More recently, a cell death pathway that involved many of the same steps was described in tumor cells and termed ferroptosis due to a dependence on iron. Since then there has been a great deal of discussion in the literature about whether these are two distinct pathways or cell type- and insult-dependent variations on the same pathway. In this review, we compare and contrast in detail the commonalities and distinctions between the two pathways concluding that the molecular pathways involved in the regulation of ferroptosis and oxytosis are highly similar if not identical. Thus, we suggest that oxytosis and ferroptosis should be regarded as two names for the same cell death pathway. In addition, we describe the potential physiological relevance of oxytosis/ferroptosis in multiple neurological diseases.

19.
Glia ; 66(9): 1845-1861, 2018 09.
Article in English | MEDLINE | ID: mdl-29693305

ABSTRACT

The communication between the immune and central nervous system (CNS) is affected in many neurological disorders. Peripheral injections of the endotoxin lipopolysaccharide (LPS) are widely used to study this communication: an LPS challenge leads to a biphasic syndrome that starts with acute sickness and is followed by persistent brain inflammation and chronic behavioral alterations such as depressive-like symptoms. In vitro, the response to LPS treatment has been shown to involve enhanced expression of system x c - . This cystine-glutamate antiporter, with xCT as specific subunit, represents the main glial provider of extracellular glutamate in mouse hippocampus. Here we injected male xCT knockout and wildtype mice with a single intraperitoneal dose of 5 mg/kg LPS. LPS-injection increased hippocampal xCT expression but did not alter the mainly astroglial localization of the xCT protein. Peripheral and central inflammation (as defined by cytokine levels and morphological activation of microglia) as well as LPS-induced sickness and depressive-like behavior were significantly attenuated in xCT-deficient mice compared with wildtype mice. Our study is the first to demonstrate the involvement of system x c - in peripheral and central inflammation in vivo and the potential therapeutic relevance of its inhibition in brain disorders characterized by peripheral and central inflammation, such as depression.


Subject(s)
Amino Acid Transport System y+/deficiency , Depression/metabolism , Illness Behavior/physiology , Inflammation/metabolism , Amino Acid Transport System y+/genetics , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cytokines/metabolism , Depression/pathology , Excitatory Amino Acid Transporter 2/metabolism , Gene Deletion , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Inflammation/pathology , Lipopolysaccharides , Male , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Microglia/pathology , RNA, Messenger/metabolism
20.
Arch Toxicol ; 92(4): 1593-1608, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29411056

ABSTRACT

Although the value of the regulatory accepted batteries for in vitro genotoxicity testing is recognized, they result in a high number of false positives. This has a major impact on society and industries developing novel compounds for pharmaceutical, chemical, and consumer products, as afflicted compounds have to be (prematurely) abandoned or further tested on animals. Using the metabolically competent human HepaRG™ cell line and toxicogenomics approaches, we have developed an upgraded, innovative, and proprietary gene classifier. This gene classifier is based on transcriptomic changes induced by 12 genotoxic and 12 non-genotoxic reference compounds tested at sub-cytotoxic concentrations, i.e., IC10 concentrations as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The resulting gene classifier was translated into an easy-to-handle qPCR array that, as shown by pathway analysis, covers several different cellular processes related to genotoxicity. To further assess the predictivity of the tool, a set of 5 known positive and 5 known negative test compounds for genotoxicity was evaluated. In addition, 2 compounds with debatable genotoxicity data were tested to explore how the qPCR array would classify these. With an accuracy of 100%, when equivocal results were considered positive, the results showed that combining HepaRG™ cells with a genotoxin-specific qPCR array can improve (geno)toxicological hazard assessment. In addition, the developed qPCR array was able to provide additional information on compounds for which so far debatable genotoxicity data are available. The results indicate that the new in vitro tool can improve human safety assessment of chemicals in general by basing predictions on mechanistic toxicogenomics information.


Subject(s)
DNA Damage , Mutagenicity Tests/methods , Mutagens/toxicity , Real-Time Polymerase Chain Reaction/methods , Cell Line , Humans , Toxicogenetics
SELECTION OF CITATIONS
SEARCH DETAIL
...