Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Addict Neurosci ; 92023 Dec 15.
Article in English | MEDLINE | ID: mdl-38152067

ABSTRACT

Alcohol use disorder (AUD) produces cognitive deficits, indicating a shift in prefrontal cortex (PFC) function. PFC glutamate neurotransmission is mostly mediated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type ionotropic receptors (AMPARs); however preclinical studies have mostly focused on other receptor subtypes. Here we examined the impact of early withdrawal from chronic ethanol on AMPAR function in the mouse medial PFC (mPFC). Dependent male C57BL/6J mice were generated using the chronic intermittent ethanol vapor-two bottle choice (CIE-2BC) paradigm. Non-dependent mice had access to water and ethanol bottles but did not receive ethanol vapor. Naïve mice had no ethanol exposure. We used patch-clamp electrophysiology to measure glutamate neurotransmission in layer 2/3 prelimbic mPFC pyramidal neurons. Since AMPAR function can be impacted by subunit composition or plasticity-related proteins, we probed their mPFC expression levels. Dependent mice had higher spontaneous excitatory postsynaptic current (sEPSC) amplitude and kinetics compared to the Naïve/Non-dependent mice. These effects were seen during intoxication and after 3-8 days withdrawal, and were action potential-independent, suggesting direct enhancement of AMPAR function. Surprisingly, 3 days withdrawal decreased expression of genes encoding AMPAR subunits (Gria1/2) and synaptic plasticity proteins (Dlg4 and Grip1) in Dependent mice. Further analysis within the Dependent group revealed a negative correlation between Gria1 mRNA levels and ethanol intake. Collectively, these data establish a role for mPFC AMPAR adaptations in the glutamatergic dysfunction associated with ethanol dependence. Future studies on the underlying AMPAR plasticity mechanisms that promote alcohol reinforcement, seeking, drinking and relapse behavior may help identify new targets for AUD treatment.

2.
Hippocampus ; 31(7): 756-769, 2021 07.
Article in English | MEDLINE | ID: mdl-33476077

ABSTRACT

The nucleus reuniens (RE) and rhomboid (RH) nuclei of the ventral midline thalamus are reciprocally connected with the prefrontal cortex (PFC) and the hippocampus (HF) and serve as key intermediaries between these structures, regulating cognitive and emotional behaviors. Regarding affective behavior, several recent reports have described the involvement of RE/RH in the acquisition and retention of conditioned fear, but little is known regarding their role (RE/RH) in anxiety-like behaviors. We examined the role of RH/RE on avoidance and defensive behaviors in male Long Evans rats using the elevated plus maze (EPM). We found that the reversible suppression of RE/RH with muscimol increased avoidance behavior to the open arms of the plus maze as shown by: (a) significant reductions in open arm entries; (b) reductions in the mean duration of time spent in the open arms; and (c) significant increases in retreats during open arm exploration. This was coupled with decreases in the number of head dips in the maze. Consistent with these behavioral effects, a single exposure of naïve rats to the plus maze produced significant increases in c-fos expression selectively in RE and RH of midline thalamic nuclei. We posit that RE/RH normally acts to optimize adaptive responses to anxiety-eliciting situations, and disruptions of RE/RH produce severe deficits in coping behaviors-or as shown here increases in avoidance/defensive behaviors. In sum, the present results establish a novel role for RE/RH in anxiety-like avoidance behavior. In addition to its role in attention, working memory, and executive control, RE/RH also regulates adaptative responses to not only fear but also to anxiogenic stimuli. As such, dysfunction of RE/RH may contribute to the amalgamation of symptoms common to many mental health disorders including anxiety, depression, schizophrenia, and PTSD.


Subject(s)
Avoidance Learning , Midline Thalamic Nuclei , Animals , Anxiety , Male , Maze Learning/physiology , Memory, Short-Term/physiology , Midline Thalamic Nuclei/physiology , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...