Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 105(4): 907-923, 2021 02.
Article in English | MEDLINE | ID: mdl-33179365

ABSTRACT

Tocochromanols constitute the different forms of vitamin E (VTE), essential components of the human diet, and display a high membrane protectant activity. By combining interval mapping and genome-wide association studies (GWAS), we unveiled the genetic determinants of tocochromanol accumulation in tomato (Solanum lycopersicum) fruits. To enhance the nutritional value of this highly consumed vegetable, we dissected the natural intraspecific variability of tocochromanols in tomato fruits and genetically engineered their biosynthetic pathway. These analyses allowed the identification of a total of 25 quantitative trait loci interspersed across the genome pinpointing the chorismate-tyrosine pathway as a regulatory hub controlling the supply of the aromatic head group for tocochromanol biosynthesis. To validate the link between the chorismate-tyrosine pathway and VTE, we engineered tomato plants to bypass the pathway at the arogenate branch point. Transgenic tomatoes showed moderate increments in tocopherols (up to approximately 20%) and a massive accumulation of tocotrienols (up to approximately 3400%). Gene expression analyses of these plants reveal a trade-off between VTE and natural variation in chorismate metabolism explained by transcriptional reprogramming of specific structural genes of the pathway. By restoring the accumulation of alpha-tocotrienols (α-t3) in fruits, the plants produced here are of high pharmacological and nutritional interest.


Subject(s)
Chorismic Acid/metabolism , Solanum lycopersicum/metabolism , Vitamin E/analysis , Chromosome Mapping , Fruit/chemistry , Fruit/metabolism , Genes, Plant/genetics , Genetic Engineering , Genetic Loci , Genetic Variation , Genome-Wide Association Study , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Metabolic Networks and Pathways/genetics , Plants, Genetically Modified , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Tyrosine/metabolism , Vitamin E/metabolism
2.
Plant Cell ; 32(10): 3188-3205, 2020 10.
Article in English | MEDLINE | ID: mdl-32753430

ABSTRACT

Cell fate maintenance is an integral part of plant cell differentiation and the production of functional cells, tissues, and organs. Fleshy fruit development is characterized by the accumulation of water and solutes in the enlarging cells of parenchymatous tissues. In tomato (Solanum lycopersicum), this process is associated with endoreduplication in mesocarp cells. The mechanisms that preserve this developmental program, once initiated, remain unknown. We show here that analysis of a previously identified tomato ethyl methanesulfonate-induced mutant that exhibits abnormal mesocarp cell differentiation could help elucidate determinants of fruit cell fate maintenance. We identified and validated the causal locus through mapping-by-sequencing and gene editing, respectively, and performed metabolic, cellular, and transcriptomic analyses of the mutant phenotype. The data indicate that disruption of the SlGBP1 gene, encoding GUANYLATE BINDING PROTEIN1, induces early termination of endoreduplication followed by late divisions of polyploid mesocarp cells, which consequently acquire the characteristics of young proliferative cells. This study reveals a crucial role of plant GBPs in the control of cell cycle genes, and thus, in cell fate maintenance. We propose that SlGBP1 acts as an inhibitor of cell division, a function conserved with the human hGBP-1 protein.


Subject(s)
Fruit/cytology , Fruit/growth & development , Plant Proteins/genetics , Solanum lycopersicum/cytology , CRISPR-Cas Systems , Cell Cycle/genetics , Cell Differentiation , Cell Size , Cell Wall/genetics , Cell Wall/metabolism , Endoreduplication , Fruit/genetics , Fruit/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Editing , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Mutation , Pectins/genetics , Pectins/metabolism , Phenotype , Plant Cells , Plant Proteins/metabolism , Plants, Genetically Modified , Ploidies
3.
J Exp Bot ; 67(15): 4767-77, 2016 08.
Article in English | MEDLINE | ID: mdl-27382114

ABSTRACT

GDP-D-mannose epimerase (GME, EC 5.1.3.18) converts GDP-D-mannose to GDP-L-galactose, and is considered to be a central enzyme connecting the major ascorbate biosynthesis pathway to primary cell wall metabolism in higher plants. Our previous work demonstrated that GME is crucial for both ascorbate and cell wall biosynthesis in tomato. The aim of the present study was to investigate the respective role in ascorbate and cell wall biosynthesis of the two SlGME genes present in tomato by targeting each of them through an RNAi-silencing approach. Taken individually SlGME1 and SlGME2 allowed normal ascorbate accumulation in the leaf and fruits, thus suggesting the same function regarding ascorbate. However, SlGME1 and SlGME2 were shown to play distinct roles in cell wall biosynthesis, depending on the tissue considered. The RNAi-SlGME1 plants harbored small and poorly seeded fruits resulting from alterations of pollen development and of pollination process. In contrast, the RNAi-SlGME2 plants exhibited vegetative growth delay while fruits remained unaffected. Analysis of SlGME1- and SlGME2-silenced seeds and seedlings further showed that the dimerization state of pectin rhamnogalacturonan-II (RG-II) was altered only in the RNAi-SlGME2 lines. Taken together with the preferential expression of each SlGME gene in different tomato tissues, these results suggest sub-functionalization of SlGME1 and SlGME2 and their specialization for cell wall biosynthesis in specific tomato tissues.


Subject(s)
Ascorbic Acid/biosynthesis , Carbohydrate Epimerases/metabolism , Cell Wall/metabolism , Solanum lycopersicum/enzymology , Carbohydrate Epimerases/physiology , Cell Wall/physiology , Gene Expression Regulation, Plant/physiology , Germination/physiology , Isoenzymes/metabolism , Isoenzymes/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Pollen/metabolism
4.
Methods Mol Biol ; 1363: 57-64, 2016.
Article in English | MEDLINE | ID: mdl-26577781

ABSTRACT

Micro-Tom tomato cultivar is particularly adapted to the development of genomic approaches in tomato. Here, we describe the culture of this plant in greenhouse, including climate regulation, seed sowing and watering, vegetative development, plant maintenance, including treatment of phytosanitary problems, and reproductive development.


Subject(s)
Environment, Controlled , Plants, Genetically Modified/growth & development , Solanum lycopersicum/growth & development , Solanum lycopersicum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...