Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 12893, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145313

ABSTRACT

Atypical Teratoid Rhabdoid Tumor (AT/RT) is a rare pediatric central nervous system cancer often characterized by deletion or mutation of SMARCB1, a tumor suppressor gene. In this study, we found that SMARCB1 regulates Human Endogenous Retrovirus K (HERV-K, subtype HML-2) expression. HML-2 is a repetitive element scattered throughout the human genome, encoding several intact viral proteins that have been associated with stem cell maintenance and tumorigenesis. We found HML-2 env expression in both the intracellular and extracellular compartments in all AT/RT cell lines (n = 4) and in 95% of AT/RT patient tissues (n = 37) evaluated. SMARCB1 knock-down in neural stem cells (NSCs) led to an upregulation of HML-2 transcription. We found that SMARCB1 binds adjacent to the HML-2 promoter, repressing its transcription via chromatin immunoprecipitation; restoration of SMARCB1 expression in AT/RT cell lines significantly downregulated HML-2 expression. Further, targeted downregulation of HML-2 transcription via CRISPR-dCas9 coupled with suppressor proteins led to cellular dispersion, decreased proliferation, and cell death in vitro. HML-2 knock-down with shRNA, siRNA, and CRISPR-dCas9 significantly decreased Ras expression as measured by qRT-PCR, suggesting that HML-2 modulates MAPK/ERK signaling in AT/RT cells. Overexpression of NRAS was sufficient to restore cellular proliferation, and MYC, a transcription factor downstream of NRAS, was bound to the HERV-K LTR significantly more in the absence of SMARCB1 expression in AT/RT cells. We show a mechanism by which these undifferentiated tumors remain pluripotent, and we demonstrate that their formation is aided by aberrant HML-2 activation, which is dependent on SMARCB1 and its interaction with MYC.


Subject(s)
Cell Transformation, Neoplastic/genetics , Endogenous Retroviruses/genetics , Rhabdoid Tumor/etiology , Rhabdoid Tumor/pathology , SMARCB1 Protein/deficiency , Sequence Deletion , Virus Activation/genetics , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation , Cell-Derived Microparticles/metabolism , Disease Susceptibility , GTP Phosphohydrolases/metabolism , Gene Expression Regulation , Humans , Membrane Proteins/metabolism , Repetitive Sequences, Nucleic Acid , Signal Transduction
2.
Viruses ; 12(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32882975

ABSTRACT

In the fifty years since the discovery of JC polyomavirus (JCPyV), the body of research representing our collective knowledge on this virus has grown substantially. As the causative agent of progressive multifocal leukoencephalopathy (PML), an often fatal central nervous system disease, JCPyV remains enigmatic in its ability to live a dual lifestyle. In most individuals, JCPyV reproduces benignly in renal tissues, but in a subset of immunocompromised individuals, JCPyV undergoes rearrangement and begins lytic infection of the central nervous system, subsequently becoming highly debilitating-and in many cases, deadly. Understanding the mechanisms allowing this process to occur is vital to the development of new and more effective diagnosis and treatment options for those at risk of developing PML. Here, we discuss the current state of affairs with regards to JCPyV and PML; first summarizing the history of PML as a disease and then discussing current treatment options and the viral biology of JCPyV as we understand it. We highlight the foundational research published in recent years on PML and JCPyV and attempt to outline which next steps are most necessary to reduce the disease burden of PML in populations at risk.


Subject(s)
JC Virus/physiology , Polyomavirus Infections/virology , Tumor Virus Infections/virology , Animals , History, 20th Century , History, 21st Century , Humans , JC Virus/genetics , Polyomavirus Infections/diagnosis , Polyomavirus Infections/drug therapy , Polyomavirus Infections/history , Tumor Virus Infections/diagnosis , Tumor Virus Infections/drug therapy , Tumor Virus Infections/history
3.
Parasitology ; 146(11): 1421-1428, 2019 09.
Article in English | MEDLINE | ID: mdl-31267883

ABSTRACT

Angiostrongylus cantonensis is a pathogenic nematode and the cause of neuroangiostrongyliasis, an eosinophilic meningitis more commonly known as rat lungworm disease. Transmission is thought to be primarily due to ingestion of infective third stage larvae (L3) in gastropods, on produce, or in contaminated water. The gold standard to determine the effects of physical and chemical treatments on the infectivity of A. cantonensis L3 larvae is to infect rodents with treated L3 larvae and monitor for infection, but animal studies are laborious and expensive and also raise ethical concerns. This study demonstrates propidium iodide (PI) to be a reliable marker of parasite death and loss of infective potential without adversely affecting the development and future reproduction of live A. cantonensis larvae. PI staining allows evaluation of the efficacy of test substances in vitro, an improvement upon the use of lack of motility as an indicator of death. Some potential applications of this assay include determining the effectiveness of various anthelmintics, vegetable washes, electromagnetic radiation and other treatments intended to kill larvae in the prevention and treatment of neuroangiostrongyliasis.


Subject(s)
Angiostrongylus cantonensis/physiology , Biological Assay/methods , Parasitology/methods , Propidium/chemistry , Angiostrongylus cantonensis/growth & development , Animals , Biomarkers/analysis , Female , Larva/growth & development , Larva/physiology , Male , Rats , Rats, Wistar
4.
Physiol Rep ; 7(12): e14112, 2019 07.
Article in English | MEDLINE | ID: mdl-31215180

ABSTRACT

The trigeminal nucleus caudalis (TNc) receives extensive afferent innervation from peripheral sensory neurons of the trigeminal ganglion (TG), and is the first central relay in the circuitry underpinning orofacial pain. Despite the initial characterization of the neurons in the superficial laminae, many questions remain. Here we report on electrophysiological properties of 535 superficial lamina I/II TNc neurons. Based on their firing pattern, we assigned these cells to five main groups, including (1) tonic, (2) phasic, (3) delayed, (4) H-current, and (5) tonic-phasic neurons, groups that exhibit distinct intrinsic properties and share some similarity with groups identified in the spinal dorsal horn. Driving predominantly nociceptive TG primary afferents using optogenetic stimulation in TRPV1/ChR2 animals, we found that tonic and H-current cells are most likely to receive pure monosynaptic input, whereas delayed neurons are more likely to exhibit inputs that appear polysynaptic. Finally, for the first time in TNc neurons, we used unsupervised clustering analysis methods and found that the kinetics of the action potentials and other intrinsic properties of these groups differ significantly from one another. Unsupervised spectral clustering based solely on a single voltage response to rheobase current was sufficient to group cells with shared properties independent of action potential discharge pattern, indicating that this approach can be effectively applied to identify functional neuronal subclasses. Together, our data illustrate that cells in the TNc with distinct patterns of TRPV1/ChR2 afferent innervation are physiologically diverse, but can be understood as a few major groups of cells having shared functional properties.


Subject(s)
Neurons/physiology , Trigeminal Nuclei/cytology , Action Potentials/physiology , Afferent Pathways/physiology , Animals , Cluster Analysis , Electrophysiological Phenomena , Evoked Potentials/physiology , Female , Male , Membrane Potentials/physiology , Mice, Knockout , Neurons, Afferent/physiology , Nuclear Lamina/physiology , Optogenetics/methods , Patch-Clamp Techniques , Photic Stimulation/methods , Synapses/physiology , TRPV Cation Channels/physiology , Trigeminal Nuclei/physiology
5.
Cell Rep ; 27(7): 1960-1966.e6, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31091436

ABSTRACT

JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML). The entry receptors for JCPyV belong to the 5-hydroxytryptamine 2 receptor (5-HT2R) family, but how individual members of the family function to facilitate infection is not known. We used proximity ligation assay (PLA) to determine that JCPyV interacts with each of the 5-HT2 receptors (5-HT2Rs) in a narrow window of time during entry. We used CRISPR-Cas9 to randomly introduce stop codons in the gene for each receptor and discovered that the second intracellular loop of each was necessary for infection. This loop contains a motif possibly involved in receptor internalization by ß-arrestin. Mutation of this motif and small interfering RNA (siRNA) knockdown of ß-arrestin recapitulated the results of our CRISPR-Cas9 screen, showing that this motif is critical. Our results have implications for the role these receptors play in virus infection and for their normal functioning as receptors for serotonin.


Subject(s)
JC Virus/genetics , Receptors, Serotonin, 5-HT2/genetics , Receptors, Serotonin, 5-HT2/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , Virus Internalization , HEK293 Cells , Host-Pathogen Interactions/genetics , Humans , JC Virus/pathogenicity , beta-Arrestins/genetics , beta-Arrestins/metabolism
6.
mBio ; 10(2)2019 04 09.
Article in English | MEDLINE | ID: mdl-30967463

ABSTRACT

The endemic human JC polyomavirus (JCPyV) causes progressive multifocal leukoencephalopathy in immune-suppressed patients. The mechanisms of virus infection in vivo are not understood because the major target cells for virus in the brain do not express virus receptors and do not bind virus. We found that JCPyV associates with extracellular vesicles (EVs) and can infect target cells independently of virus receptors. Virus particles were found packaged inside extracellular vesicles and attached to the outer side of vesicles. Anti-JCPyV antisera reduced infection by purified virus but had no effect on infection by EV-associated virus. Treatment of cells with the receptor-destroying enzyme neuraminidase inhibited infection with purified virus but did not inhibit infection by EV-associated virus. Mutant pseudoviruses defective in sialic acid receptor binding could not transduce cells as purified pseudovirions but could do so when associated with EVs. This alternative mechanism of infection likely plays a critical role in the dissemination and spread of JCPyV both to and within the central nervous system.IMPORTANCE JC polyomavirus (JCPyV) is a ubiquitous human pathogen that causes progressive multifocal leukoencephalopathy (PML), a severe and often fatal neurodegenerative disease in immunocompromised or immunomodulated patients. The mechanisms responsible for initiating infection in susceptible cells are not completely known. The major attachment receptor for the virus, lactoseries tetrasaccharide c (LSTc), is paradoxically not expressed on oligodendrocytes or astrocytes in human brain, and virus does not bind to these cells. Because these are the major cell types targeted by the virus in the brain, we hypothesized that alternative mechanisms of infection must be responsible. Here we provide evidence that JCPyV is packaged in extracellular vesicles from infected cells. Infection of target cells by vesicle-associated virus is not dependent on LSTc and is not neutralized by antisera directed against the virus. This is the first demonstration of a polyomavirus using extracellular vesicles as a means of transmission.


Subject(s)
Extracellular Vesicles/virology , JC Virus/physiology , Virus Internalization , Cell Line , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...