Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Microsc Microanal ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838186

ABSTRACT

Ossa cordis, bones located within the heart trigones, are often classified as heterotopic or ectopic bones. Despite their high prevalence in cattle and some other bovids, little is known about their structure or development. Scanning electron microscopy, X-ray microtomography, gross dissections, and measurements showed the anatomical locations, prevalence, shapes, and measurements of the cardiac bones in both Egyptian Baladi cattle and Holstein-Friesians. All cattle (n = 12) had an Ossa cordis dextrum (average = 50.70 × 20.91 × 5.40 mm). Additionally, 80% Egyptian Baladi and 57% Holstein-Friesian had a smaller Ossa cordis sinistrum (average = 24.94 × 12.75 × 4.12 mm). Egyptian Baladi Ossa cordis were smaller than observed in Holstein-Friesians. Energy-dispersive X-ray analysis showed the elemental constitution (carbon, oxygen, calcium, nitrogen, phosphorus, sodium, and magnesium) of Ossa cordis and Cartilago cordis. These imaging techniques, plus four histological stains (hematoxylin and eosin, Crossman's trichrome, Alcian blue with Van Gieson, and Sirius Red) and microscopy, demonstrated osteoblasts, osteocytes, osteoclasts, astrocytes, blood vessels, bone marrow, lamellar and woven bone, cortical bone, trabeculations with pores and canaliculi, and fibrous components including collagen in the Ossa cordis dextrum and sinistrum. Hyaline cartilage and fibrocartilage (chondrocytes and cartilage matrix) were found within and surrounding the Ossa cordis. These findings were additionally compared against other cattle breeds and species.

2.
New Phytol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666346

ABSTRACT

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning.

3.
Sci Total Environ ; 915: 170144, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242468

ABSTRACT

Streams are susceptible to pesticide pollutants which are transported outside of the intended area of application from surrounding agricultural fields. It is essential to monitor the occurrence and levels of pesticides in aquatic ecosystems to comprehend their effects on the aquatic environment. The common sampling strategy used for monitoring pesticides in stream ecosystems is through the collection and analysis of grab water samples. However, grab water sampling may not effectively monitor pesticides due to its limited ability to capture temporal and spatial variability, potentially missing fluctuations and uneven distribution of pesticides in aquatic environments. Monitoring using periphyton and sediment sampling may offer a more comprehensive approach by accounting for accumulative processes and temporal variations. Periphyton are a collective of microorganisms that grow on hard surfaces in aquatic ecosystems. They are responsive to chemical and biological changes in the environment, and therefore have the potential to act as a cost-effective, integrated sampling tool to monitor pesticide exposures in aquatic ecosystems. The objective of this study was to assess pesticides detected through periphyton, suspended sediment, and conventional grab water sampling methods and identify the matrix that offers a more comprehensive characterization of a stream's pesticide exposure profile. Ten streams across Southern Ontario were sampled in 2021 and 2022. At each stream site, water, sediment and periphyton, colonizing both artificial and natural substrates, were collected and analyzed for the presence of ~500 pesticides. Each of the three matrices detected distinctive pesticide exposure profiles. The frequency of detection in periphyton, sediment and water matrices were related to pesticides' log Kow and log Koc (P < 0.05). In addition, periphyton bioconcentrated 22 pesticides above levels observed in the ambient water. The bioconcentration factors of pesticides in periphyton can be predicted from their log Kow (simple linear regressions, P < 0.05). The results demonstrate that sediment and periphyton accumulate pesticides in stream environments. This highlights the importance of monitoring pesticide exposure using these matrices to ensure a complete and comprehensive characterization of exposure in stream ecosystems.


Subject(s)
Periphyton , Pesticides , Water Pollutants, Chemical , Pesticides/analysis , Ecosystem , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water/analysis , Geologic Sediments , Environmental Monitoring/methods
4.
Nat Commun ; 14(1): 4665, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537157

ABSTRACT

Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Oxygen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/metabolism , Gene Expression Regulation, Plant
5.
Environ Toxicol Chem ; 42(10): 2143-2157, 2023 10.
Article in English | MEDLINE | ID: mdl-37341551

ABSTRACT

Residual concentrations of pesticides are commonly found outside the intended area of application in Ontario's surface waters. Periphyton are a vital dietary component for grazing organisms in aquatic ecosystems but can also accumulate substantial levels of pesticides from the surrounding water. Consequently, grazing aquatic organisms are likely subjected to pesticide exposure through the consumption of pesticide-contaminated periphyton. The objectives of the present study were to determine if pesticides partition into periphyton in riverine environments across southern Ontario and, if so, to determine the toxicity of pesticides in periphyton when fed to the grazing mayfly Neocloeon triangulifer. Sites with low, medium, and high pesticide exposure based on historic water quality monitoring data were selected to incorporate a pesticide exposure gradient into the study design. Artificial substrate samplers were utilized to colonize periphyton in situ, which were then analyzed for the presence of approximately 500 pesticides. The results demonstrate that periphyton are capable of accumulating pesticides in agricultural streams. A novel 7-day toxicity test method was created to investigate the effects of pesticides partitioned into periphyton when fed to N. triangulifer. Periphyton collected from the field sites were fed to N. triangulifer and survival and biomass production recorded. Survival and biomass production significantly decreased when fed periphyton colonized in streams with catchments dominated by agricultural land use (p < 0.05). However, the relationship between pesticide concentration and survival or biomass production was not consistent. Using field-colonized periphyton allowed us to assess the dietary toxicity of environmentally relevant concentrations of pesticide mixtures; however, nutrition and taxonomic composition of the periphyton may vary between sites. Environ Toxicol Chem 2023;42:2143-2157. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Ephemeroptera , Periphyton , Pesticides , Water Pollutants, Chemical , Animals , Pesticides/toxicity , Rivers/chemistry , Ecosystem , Water Pollutants, Chemical/toxicity , Environmental Monitoring
6.
Am J Bot ; 110(7): e16182, 2023 07.
Article in English | MEDLINE | ID: mdl-37272508

ABSTRACT

PREMISE: In recent years, Doyleales have played an important role in the discussion and exploration of seed plant relationships and the origin of angiosperms. This order comprises a diversity of recently described genera with cupule-bearing compound ovulate cones recovered from Early Cretaceous deposits in North America and Asia. Their relatively late appearance in the fossil record, stratigraphically near the appearance of angiosperms in the Early Cretaceous, has been noteworthy. Here, we report a new genus of Doyleales, Zirabia gen. nov. from the Early Jurassic of Iran, that was originally described as the ginkgophyte Karkenia. METHODS: We reinvestigated material previously assigned to Karkenia cylindrica from the Lower Jurassic of the Zirab locality, Alborz Mountains, northern Iran. RESULTS: The studied specimen features a main axis bearing helically to irregularly arranged bract-cupule complexes, each composed by a long laminar bract subtending and sheathing a cupule stalk that bears a single-seeded cupule with a dorsal protrusion. The morphological features of this taxon do not conform with those of Karkenia, and suggest affinities with Doyleales rather than Ginkgoales. Within Doyleales, this fossil has a unique combination of characters indicating that it is a new genus within the order; thus, a new combination is erected, Zirabia cylindrica. CONCLUSIONS: Our results indicate that Doyleales is significantly older than previously thought, with their stratigraphic range now extending from the Lower Jurassic to the Cretaceous. The Early Jurassic occurrence of Doyleales provides important data on the emergence of seed-enclosing structures seen in seed plants throughout the Mesozoic.


Subject(s)
Biological Evolution , Magnoliopsida , Seeds/anatomy & histology , Ginkgo biloba , Fossils
7.
Arch Environ Contam Toxicol ; 85(1): 1-12, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37233741

ABSTRACT

The elevated use of salt as a de-icing agent on roads in Canada is causing an increase in the chloride concentration of freshwater ecosystems. Freshwater Unionid mussels are a group of organisms that are sensitive to increases in chloride levels. Unionids have greater diversity in North America than anywhere else on Earth, but they are also one of the most imperiled groups of organisms. This underscores the importance of understanding the effect that increasing salt exposure has on these threatened species. There are more data on the acute toxicity of chloride to Unionids than on chronic toxicity. This study investigated the effect of chronic sodium chloride exposure on the survival and filtering activity of two Unionid species (Eurynia dilatata, and Lasmigona costata) and assessed the effect on the metabolome in L. costata hemolymph. The concentration causing mortality after 28 days of exposure was similar for E. dilatata (1893 mg Cl-/L) and L. costata (1903 mg Cl-/L). Significant changes in the metabolome of the L. costata hemolymph were observed for mussels exposed to non-lethal concentrations. For example, several phosphatidylethanolamines, several hydroxyeicosatetraenoic acids, pyropheophorbide-a, and alpha-linolenic acid were significantly upregulated in the hemolymph of mussels exposed to 1000 mg Cl-/L for 28 days. While no mortality occurred in the treatment, elevated metabolites in the hemolymph are an indicator of stress.


Subject(s)
Bivalvia , Unionidae , Water Pollutants, Chemical , Animals , Sodium Chloride/toxicity , Chlorides , Ecosystem , Water Pollutants, Chemical/analysis , Bivalvia/metabolism , Sodium Chloride, Dietary
8.
New Phytol ; 238(4): 1695-1710, 2023 05.
Article in English | MEDLINE | ID: mdl-36943236

ABSTRACT

The Cycadales are an ancient and charismatic group of seed plants. However, their morphological evolution in deep time is poorly understood. While molecular divergence time analyses estimate a Cretaceous origin for most major living cycad clades, much of the extant diversity is inferred to be a result of Neogene diversifications. This leads to long branches throughout the cycadalean phylogeny that, with few exceptions, have yet to be rectified by unequivocal fossil cycads. We report a permineralized pollen cone from the Campanian Holz Shale located in Silverado Canyon, CA, USA (c. 80 million yr ago). This fossil was studied via serial sectioning, SEM, 3D reconstruction and phylogenetic analyses. Microsporophyll and pollen morphology indicate this cone is assignable to Skyttegaardia, a recently described genus based on disarticulated lignitized microsporophylls from the Early Cretaceous of Denmark. Data from this new species, including a simple cone architecture, anatomical details and vasculature organization, indicate cycadalean affinities for Skyttegaardia. Phylogenetic analyses support this assignment and recover Skyttegaardia as crown-group Cycadales, nested within Zamiaceae. Our findings support a Cretaceous diversification for crown-group Zamiaceae, which included the evolution of morphological divergent extinct taxa with unique traits that have yet to be widely identified in the fossil record.


Subject(s)
Cycadopsida , Seeds , Phylogeny , Time Factors , Pollen , Fossils , Biological Evolution
9.
Nat Plants ; 8(12): 1374-1377, 2022 12.
Article in English | MEDLINE | ID: mdl-36376504

ABSTRACT

Today the asterids comprise over 80,000 species of flowering plants; however, relatively little is known about the timing of their early diversification. This is particularly true for the diverse lamiid clade, which comprises half of asterid diversity. Here, a lamiid fossil fruit assigned to Icacinaceae from the Campanian of western North America provides important macrofossil evidence indicating that lamiids diverged at least 80 million years ago and sheds light on potential Cretaceous rainforest-like ecosystems.


Subject(s)
Fossils , Magnoliopsida , Phylogeny , Ecosystem , North America
10.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881796

ABSTRACT

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Subject(s)
Crops, Agricultural , Gravitropism , Hordeum , Plant Proteins , Plant Roots , Cell Wall/chemistry , Crops, Agricultural/chemistry , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gravitropism/genetics , Hordeum/chemistry , Hordeum/genetics , Hordeum/growth & development , Microscopy, Atomic Force , Plant Proteins/genetics , Plant Proteins/physiology , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/growth & development , Reactive Oxygen Species/metabolism , Transcription, Genetic
11.
Sci Rep ; 12(1): 8702, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610472

ABSTRACT

The end-Permian extinction (EPE) has been considered to be contemporaneous on land and in the oceans. However, re-examined floristic records and new radiometric ages from Gondwana indicate a nuanced terrestrial ecosystem response to EPE global change. Paleosol geochemistry and climate simulations indicate paleoclimate change likely caused the demise of the widespread glossopterid ecosystems in Gondwana. Here, we evaluate the climate response of plants to the EPE via dendrochronology snapshots to produce annual-resolution records of tree-ring growth for a succession of late Permian and early Middle Triassic fossil forests from Antarctica. Paleosol geochemistry indicates a shift in paleoclimate towards more humid conditions in the Early and early Middle Triassic relative to the late Permian. Paleosol morphology, however, supports inferences of a lack of forested ecosystems in the Early Triassic. The plant responses to this paleoclimate change were accompanied by enhanced stress during the latest Permian as determined by high-resolution paleoclimate analysis of wood growth intervals. These results suggest that paleoclimate change during the late Permian exerted significant stress on high-latitude forests, consistent with the hypothesis that climate change was likely the primary driver of the extinction of the glossopterid ecosystems.


Subject(s)
Ecosystem , Extinction, Biological , Forests , Fossils , Oceans and Seas , Plants
12.
New Phytol ; 234(2): 704-718, 2022 04.
Article in English | MEDLINE | ID: mdl-35043416

ABSTRACT

Cunoniaceae are important elements of rainforests across the Southern Hemisphere. Many of these flowering plants are considered Paleo-Antarctic Rainforest Lineages that had a Gondwanan distribution since the Paleocene. Fossils of several modern genera within the family, such as Ceratopetalum, have indicated biogeographical connections between South America and Australia in the Cenozoic. Here, we report a dramatic geographical range extension for Ceratopetalum, and Cunoniaceae as a whole, based on two exceptionally preserved fossil winged fruits from Campanian (c. 82-80 Ma old) deposits on Sucia Island, Washington, USA. The fossils were studied using physical sectioning, light microscopy, micro-computed tomography scanning and multiple phylogenetic analyses. The fossil fruits share diagnostic characters with Ceratopetalum such as the presence of four to five persistent calyx lobes, a prominent nectary disk, persistent stamens, a semi-inferior ovary and two persistent styles. Based on morphological comparisons with fruits of extant species and support from phylogenetic analyses, the fossils are assigned to a new species Ceratopetalum suciensis. These fossils are the first unequivocal evidence of crown Cunoniaceae from the Cretaceous of North America, indicating a more complicated biogeographical history for this important Gondwanan family.


Subject(s)
Flowers , Fossils , Flowers/anatomy & histology , Phylogeny , Rainforest , X-Ray Microtomography
13.
New Phytol ; 232(2): 914-927, 2021 10.
Article in English | MEDLINE | ID: mdl-34031894

ABSTRACT

An abrupt transition in the fossil record separates Early Devonian euphyllophytes with a simple structure from a broad diversity of structurally complex Middle-Late Devonian plants. Morphological evolution and phylogeny across this transition are poorly understood due to incomplete sampling of the fossil record. We document a new Early Devonian radiatopsid and integrate it in analyses addressing euphyllophyte relationships. Anatomically preserved Emsian fossils (402-394 Ma) from the Battery Point Formation (Gaspé, Quebec, Canada) are studied in serial sections. The phylogenetic analysis is based on a matrix of 31 taxa and 50 characters emphasising vegetative morphology (41 discrete, nine continuous). The new plant, Kenrickia bivena gen. et sp. nov., is one of very few structurally complex euphyllophytes documented in the Early Devonian. Inclusion of Kenrickia overturns previously established phylogenetic relationships among Radiatopses, reiterating the need for increased density of Early Devonian taxon sampling. Kenrickia is recovered as the sister lineage to all other radiatopsids, a clade in which paraphyletic Stenokoleales led to a lignophyte clade where archaeopterids and seed plants fall into sister clades. Our results shed light on early euphyllophyte relationships and evolution, indicating early exploration of structural complexity by multiple lineages and reiterating the potential of a single origin of secondary growth in euphyllophytes.


Subject(s)
Fossils , Tracheophyta , Biological Evolution , Phylogeny , Plants , Seeds
14.
Plant Methods ; 17(1): 26, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750418

ABSTRACT

BACKGROUND: Wheat spike architecture is a key determinant of multiple grain yield components and detailed examination of spike morphometric traits is beneficial to explain wheat grain yield and the effects of differing agronomy and genetics. However, quantification of spike morphometric traits has been very limited because it relies on time-consuming manual measurements. RESULTS: In this study, using X-ray Computed Tomography imaging, we proposed a method to efficiently detect the 3D architecture of wheat spikes and component spikelets by clustering grains based on their Euclidean distance and relative positions. Morphometric characteristics of wheat spikelets and grains, e.g., number, size and spatial distribution along the spike can be determined. Two commercial wheat cultivars, one old, Maris Widgeon, and one modern, Siskin, were studied as examples. The average grain volume of Maris Widgeon and Siskin did not differ, but Siskin had more grains per spike and therefore greater total grain volume per spike. The spike length and spikelet number were not statistically different between the two cultivars. However, Siskin had a higher spikelet density (number of spikelets per unit spike length), with more grains and greater grain volume per spikelet than Maris Widgeon. Spatial distribution analysis revealed the number of grains, the average grain volume and the total grain volume of individual spikelets varied along the spike. Siskin had more grains and greater grain volumes per spikelet from spikelet 6, but not spikelet 1-5, compared with Maris Widgeon. The distribution of average grain volume along the spike was similar for the two wheat cultivars. CONCLUSION: The proposed method can efficiently extract spike, spikelet and grain morphometric traits of different wheat cultivars, which can contribute to a more detailed understanding of the sink of wheat grain yield.

16.
J Exp Bot ; 72(2): 747-756, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33064808

ABSTRACT

Wheat (Triticum aestivum L.) root growth in the subsoil is usually constrained by soil strength, although roots can use macropores to elongate to deeper layers. The quantitative relationship between the elongation of wheat roots and the soil pore system, however, is still to be determined. We studied the depth distribution of roots of six wheat varieties and explored their relationship with soil macroporosity from samples with the field structure preserved. Undisturbed soil cores (to a depth of 100 cm) were collected from the field and then non-destructively imaged using X-ray computed tomography (at a spatial resolution of 90 µm) to quantify soil macropore structure and root number density (the number of roots cm-2 within a horizontal cross-section of a soil core). Soil macroporosity changed significantly with depth but not between the different wheat lines. There was no significant difference in root number density between wheat varieties. In the subsoil, wheat roots used macropores, especially biopores (i.e. former root or earthworm channels) to grow into deeper layers. Soil macroporosity explained 59% of the variance in root number density. Our data suggested that the development of the wheat root system in the field was more affected by the soil macropore system than by genotype. On this basis, management practices which enhance the porosity of the subsoil may therefore be an effective strategy to improve deep rooting of wheat.


Subject(s)
Soil , Triticum , Genotype , Plant Roots , Porosity
17.
Am J Bot ; 107(1): 139-147, 2020 01.
Article in English | MEDLINE | ID: mdl-31903551

ABSTRACT

PREMISE: The mahogany family (Meliaceae) is an angiosperm lineage comprising many species that are important elements in tropical ecosystems, and is often used as a study system to understand the evolution of tropical rainforests. While divergence time studies have estimated a Cretaceous origin for the family, no unequivocal fossils of that age have been described. Here, the first Cretaceous evidence for Meliaceae is reported, based on an exceptionally well-preserved fruit from the Upper Cretaceous (79-72 Ma, Campanian) of North America. METHODS: The fossil fruit was prepared using traditional paleobotanical techniques. Bayesian phylogenetic analyses using morphological and molecular data were conducted to assess the phylogenetic position of the Cretaceous fruit in Meliaceae and to assess the effect of morphology for inferring the overall pattern of phylogeny for the family. RESULTS: The fruit consists of a fleshy mesocarp and a woody endocarp with a hollow center, nine locules, loculicidal sutures, and one subapically attached seed per locule that has an enlarged sarcotesta near the hilum. The combination of characters in this fruit is strikingly similar to the genus Melia L. Phylogenetic analyses recover the Cretaceous fruit as being closely related to Melia and highlights the effect of fruit morphological data for inferring the overall pattern of phylogeny in Meliaceae. There are a few structural differences between the fossil fruit of this study and Melia; thus, the newly characterized Cretaceous taxon is named Manchestercarpa vancouverensis gen. et sp. nov. DISCUSSION: These results clearly confirm a Cretaceous origin for Meliaceae and that important tropical families were present prior to the development of modern tropical ecosystems in the Cenozoic.


Subject(s)
Fossils , Meliaceae , Bayes Theorem , Ecosystem , North America , Phylogeny
18.
Front Plant Sci ; 11: 617830, 2020.
Article in English | MEDLINE | ID: mdl-33488660

ABSTRACT

Quantification of anatomical and compositional features underpins both fundamental and applied studies of plant structure and function. Relatively few non-invasive techniques are available for aquatic plants. Traditional methods such as sectioning are low-throughput and provide 2-dimensional information. X-ray Computed Microtomography (µCT) offers a non-destructive method of three dimensional (3D) imaging in planta, but has not been widely used for aquatic species, due to the difficulties in sample preparation and handling. We present a novel sample handling protocol for aquatic plant material developed for µCT imaging, using duckweed plants and turions as exemplars, and compare the method against existing approaches. This technique allows for previously unseen 3D volume analysis of gaseous filled spaces, cell material, and sub-cellular features. The described embedding method, utilizing petrolatum gel for sample mounting, was shown to preserve sample quality during scanning, and to display sufficiently different X-ray attenuation to the plant material to be easily differentiated by image analysis pipelines. We present this technique as an improved method for anatomical structural analysis that provides novel cellular and developmental information.

19.
Plant Cell ; 31(8): 1751-1766, 2019 08.
Article in English | MEDLINE | ID: mdl-31142581

ABSTRACT

Desert plants have developed mechanisms for adapting to hostile desert conditions, yet these mechanisms remain poorly understood. Here, we describe two unique modes used by desert date palms (Phoenix dactylifera) to protect their meristematic tissues during early organogenesis. We used x-ray micro-computed tomography combined with high-resolution tissue imaging to reveal that, after germination, development of the embryo pauses while it remains inside a dividing and growing cotyledonary petiole. Transcriptomic and hormone analyses show that this developmental arrest is associated with the low expression of development-related genes and accumulation of hormones that promote dormancy and confer resistance to stress. Furthermore, organ-specific cell-type mapping demonstrates that organogenesis occurs inside the cotyledonary petiole, with identifiable root and shoot meristems and their respective stem cells. The plant body emerges from the surrounding tissues with developed leaves and a complex root system that maximizes efficient nutrient and water uptake. We further show that, similar to its role in Arabidopsis (Arabidopsis thaliana), the SHORT-ROOT homolog from date palms functions in maintaining stem cell activity and promoting formative divisions in the root ground tissue. Our findings provide insight into developmental programs that confer adaptive advantages in desert plants that thrive in hostile habitats.


Subject(s)
Phoeniceae/metabolism , Phoeniceae/physiology , Plant Roots/metabolism , Plant Roots/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Meristem/genetics , Meristem/metabolism , Meristem/physiology , Phoeniceae/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics
20.
Ann Bot ; 123(3): 451-460, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30212854

ABSTRACT

BACKGROUND AND AIMS: The asterids (>80 000 extant species) appear in the fossil record with considerable diversity near the Turonian-Coniacian boundary (~90 Ma; Late Cretaceous) and are strongly represented in the earliest diverging lineage, Cornales. These early asterid representatives have so far been reported from western North America and eastern Asia. In this study, we characterize a new cornalean taxon based on charcoalified fruits from the upper Turonian of eastern North America, a separate landmass from western North America at the time, and identify early palaeobiogeographical patterns of Cornales during the Cretaceous. METHODS: Fossils were studied and imaged using scanning electron microscopy and micro-computed tomography (micro-CT) scanning. To assess the systematic affinities of the fossils, phylogenetic analyses were conducted using maximum parsimony. KEY RESULTS: The charcoalified fruits are represented by tri-locular woody endocarps with dorsal apically opening germination valves. Three septa intersect to form a robust central axis. Endocarp ground tissue consists of two zones: an outer endocarp composed of isodiametric sclereids and an inner endocarp containing circum-locular fibres. Central vasculature is absent; however, there are several small vascular bundles scattered within the septa. Phylogenetic analysis places the new taxon within the extinct genus Eydeia. DISCUSSION: Thick-walled endocarps with apically opening germination valves, no central vascular bundle and one seed per locule are indicative of the order Cornales. Comparative analysis suggests that the fossils represent a new species, Eydeia jerseyensis sp. nov. This new taxon is the first evidence of Cornales in eastern North America during the Cretaceous and provides insights into the palaeobiogeography and initial diversification of the order.


Subject(s)
Biological Evolution , Fossils/anatomy & histology , Magnoliopsida/anatomy & histology , Fruit/anatomy & histology , Fruit/classification , Fruit/ultrastructure , Magnoliopsida/classification , Magnoliopsida/ultrastructure , Microscopy, Electron, Scanning , New Jersey , Phylogeny , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...