Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 661900, 2021.
Article in English | MEDLINE | ID: mdl-34054827

ABSTRACT

TNF is a multifunctional cytokine with its key functions attributed to inflammation, secondary lymphoid tissue organogenesis and immune regulation. However, it is also a physiological regulator of hematopoiesis and is involved in development and homeostatic maintenance of various organs and tissues. Somewhat unexpectedly, the most important practical application of TNF biology in medicine is anti-TNF therapy in several autoimmune diseases. With increased number of patients undergoing treatment with TNF inhibitors and concerns regarding possible adverse effects of systemic cytokine blockade, the interest in using humanized mouse models to study the efficacy and safety of TNF-targeting biologics in vivo is justified. This Perspective discusses the main functions of TNF and its two receptors, TNFR1 and TNFR2, in steady state, as well as in emergency hematopoiesis. It also provides a comparative overview of existing mouse lines with humanization of TNF/TNFR system. These genetically engineered mice allow us to study TNF signaling cascades in the hematopoietic compartment in the context of various experimental disease models and for evaluating the effects of various human TNF inhibitors on hematopoiesis and other physiological processes.


Subject(s)
Hematopoiesis/drug effects , Hematopoiesis/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/immunology , Animals , Cells, Cultured , Humans , Inflammation/immunology , Mice , Mice, Transgenic , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type II/antagonists & inhibitors , Signal Transduction
2.
Bioact Mater ; 6(10): 3449-3460, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33817420

ABSTRACT

Bioengineered scaffolds are crucial components in artificial tissue construction. In general, these scaffolds provide inert three-dimensional (3D) surfaces supporting cell growth. However, some scaffolds can affect the phenotype of cultured cells, especially, adherent stromal cells, such as fibroblasts. Here we report on unique properties of 3D fibroin/gelatin materials, which may rapidly induce expression of adhesion molecules, such as ICAM-1 and VCAM-1, in cultured primary murine embryonic fibroblasts (MEFs). In contrast, two-dimensional (2D) fibroin/gelatin films did not show significant effects on gene expression profiles in fibroblasts as compared to 3D culture conditions. Interestingly, TNF expression was induced in MEFs cultured in 3D fibroin/gelatin scaffolds, while genetic or pharmacological TNF ablation resulted in diminished ICAM-1 and VCAM-1 expression by these cells. Using selective MAPK inhibitors, we uncovered critical contribution of JNK to 3D-induced upregulation of these adhesion molecules. Moreover, we observed ICAM-1/VCAM-1-dependent adhesion of lymphocytes to fibroblasts cultured in 3D fibroin/gelatin scaffolds, but not on 2D fibroin/gelatin films, suggesting functional reprogramming in stromal cells, when exposed to 3D environment. Finally, we observed significant infiltration of lymphocytes into 3D fibroin/gelatin, but not into collagen scaffolds in vivo upon subcapsular kidney implantation in mice. Together our data highlight the important features of fibroin/gelatin scaffolds, when they are produced as 3D sponges rather than 2D films, which should be considered when using these materials for tissue engineering.

3.
J Leukoc Biol ; 107(6): 893-905, 2020 06.
Article in English | MEDLINE | ID: mdl-32083339

ABSTRACT

TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Multiple Sclerosis/genetics , Neuroimmunomodulation/genetics , Receptors, Tumor Necrosis Factor, Type II/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Autoimmunity/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Psoriasis/genetics , Psoriasis/immunology , Psoriasis/metabolism , Psoriasis/pathology , Receptors, Tumor Necrosis Factor, Type I/immunology , Receptors, Tumor Necrosis Factor, Type II/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Tumor Necrosis Factor-alpha/immunology
4.
Semin Arthritis Rheum ; 49(3S): S39-S42, 2019 12.
Article in English | MEDLINE | ID: mdl-31779851

ABSTRACT

In spite of successful therapeutic neutralization of proinflammatory cytokines in several autoimmune diseases, such therapy is not entirely free of side effects. The main reason relates to the fact that cytokine signaling may have protective components that need to be spared. Several approaches to achieve a less damaging cytokine inhibition are being explored. In our experimental studies we are using bispecific reagents based on VHH-modules from the heavy-chain-only antibodies to limit bioavailability of TNF and IL-6 produced by myeloid cells. After evaluation of their properties in vitro and in vivo we argue that these types of reagents may have an advantage over systemic blockers.


Subject(s)
Autoimmune Diseases/metabolism , Autoimmunity , Cytokines/metabolism , Myeloid Cells/metabolism , Animals , Autoimmune Diseases/immunology , Biological Availability , Humans
5.
Proc Natl Acad Sci U S A ; 115(51): 13051-13056, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30498033

ABSTRACT

TNF is a multifunctional cytokine involved in autoimmune disease pathogenesis that exerts its effects through two distinct TNF receptors, TNFR1 and TNFR2. While TNF- and TNFR1-deficient (but not TNFR2-deficient) mice show very similar phenotypes, the significance of TNFR2 signaling in health and disease remains incompletely understood. Recent studies implicated the importance of the TNF/TNFR2 axis in T regulatory (Treg) cell functions. To definitively ascertain the significance of TNFR2 signaling, we generated and validated doubly humanized TNF/TNFR2 mice, with the option of conditional inactivation of TNFR2. These mice carry a functional human TNF-TNFR2 (hTNF-hTNFR2) signaling module and provide a useful tool for comparative evaluation of TNF-directed biologics. Conditional inactivation of TNFR2 in FoxP3+ cells in doubly humanized TNF/TNFR2 mice down-regulated the expression of Treg signature molecules (such as FoxP3, CD25, CTLA-4, and GITR) and diminished Treg suppressive function in vitro. Consequently, Treg-restricted TNFR2 deficiency led to significant exacerbation of experimental autoimmune encephalomyelitis (EAE), accompanied by reduced capacity to control Th17-mediated immune responses. Our findings expose the intrinsic and beneficial effects of TNFR2 signaling in Treg cells that could translate into protective functions in vivo, including treatment of autoimmunity.


Subject(s)
Autoimmunity/immunology , Central Nervous System/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Receptors, Tumor Necrosis Factor, Type II/physiology , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/physiology , Animals , Cells, Cultured , Central Nervous System/metabolism , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout
6.
Front Immunol ; 8: 1073, 2017.
Article in English | MEDLINE | ID: mdl-28919896

ABSTRACT

Proinflammatory cytokines, such as TNF, IL-6, and IL-1, play pathogenic roles in multiple diseases and are attractive targets for biologic drugs. Because proinflammatory cytokines possess non-redundant protective and immunoregulatory functions, their systemic neutralization carries the potential for unwanted side effects. Therefore, next-generation anti-cytokine therapies would seek to selectively neutralize pathogenic cytokine signaling, leaving normal function intact. Fortunately, the biology of proinflammatory cytokines provides several such opportunities. Here, we discuss various applications of bispecific antibodies targeting cytokines with specific focus on selective TNF neutralization targeted directly to the surface of specific populations of monocytes and macrophages. These bispecific antibodies combine an anti-TNF VHH with VHHs or scFvs directed against abundant surface molecules on myeloid cells and serve to limit the bioavailability of TNF produced by these cells. Such reagents may become prototypes of a novel class of anti-cytokine biologics.

7.
Cytokine ; 89: 127-135, 2017 01.
Article in English | MEDLINE | ID: mdl-26854213

ABSTRACT

The link between inflammation and cancer was first proposed by R. Virchow. It was later realized that it is chronic inflammation that may promote cancer, whereas acute inflammation can actually block tumor development or even result in cure. Many molecular mediators of these diverse processes have been characterized only during the past 3 decades thanks to the advances in molecular and cellular techniques, as well as due to technologies of reverse genetics. In this chapter we discuss the role of Toll-like receptor (TLR) 4 signaling in cancer and contributions of proinflammatory cytokine signaling (whose expression may be driven by TLR-mediated signals) to tumor-promoting microenvironment. We also discuss recent clinical advances to target these pro-tumorigenic pathways at distinct stages of tumorigenesis.


Subject(s)
Cell Transformation, Neoplastic/immunology , Neoplasm Proteins/immunology , Neoplasms/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Tumor Microenvironment/immunology , Animals , Cell Transformation, Neoplastic/pathology , Cytokines/immunology , Humans , Neoplasms/pathology
8.
Front Immunol ; 7: 147, 2016.
Article in English | MEDLINE | ID: mdl-27148266

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells (IMCs) that, under normal conditions, may differentiate into mature macrophages, granulocytes, and dendritic cells. However, under pathological conditions associated with inflammation, cancer, or infection, such differentiation is inhibited leading to IMC expansion. Under the influence of inflammatory cytokines, these cells become MDSCs, acquire immunosuppressive phenotype, and accumulate in the affected tissue, as well as in the periphery. Immune suppressive activity of MDSCs is partly due to upregulation of arginase 1, inducible nitric oxide synthase, and anti-inflammatory cytokines, such as IL-10 and TGF-ß. These suppressive factors can enhance tumor growth by repressing T-cell-mediated anti-tumor responses. TNF is a critical factor for the induction, expansion, and suppressive activity of MDSCs. In this study, we evaluated the effects of systemic TNF ablation on tumor-induced expansion of MDSCs in vivo using TNF humanized (hTNF KI) mice. Both etanercept and infliximab treatments resulted in a delayed growth of MCA 205 fibrosarcoma in hTNF KI mice, significantly reduced tumor volume, and also resulted in less accumulated MDSCs in the blood 3 weeks after tumor cell inoculation. Thus, our study uncovers anti-tumor effects of systemic TNF ablation in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...