Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 994523, 2022.
Article in English | MEDLINE | ID: mdl-36388557

ABSTRACT

Titanium is a ubiquitous element with a wide variety of beneficial effects in plants, including enhanced nutrient uptake and resistance to pathogens and abiotic stresses. While there is numerous evidence supporting the beneficial effects that Ti fertilization give to plants, there is little information on which genetic signaling pathways the Ti application activate in plant tissues. In this study, we utilize RNA-seq and ionomics technologies to unravel the molecular signals that Arabidopsis plants unleash when treated with Ti. RNA-seq analysis showed that Ti activates abscisic acid and salicylic acid signaling pathways and the expression of NUCLEOTIDE BINDING SITE-LEUCINE RICH REPEAT receptors likely by acting as a chemical priming molecule. This activation results in enhanced resistance to drought, high salinity, and infection with Botrytis cinerea in Arabidopsis. Ti also grants an enhanced nutritional state, even at suboptimal phosphate concentrations by upregulating the expression of multiple nutrient and membrane transporters and by modifying or increasing the production root exudates. Our results suggest that Ti might act similarly to the beneficial element Silicon in other plant species.

2.
ISME J ; 16(1): 149-158, 2022 01.
Article in English | MEDLINE | ID: mdl-34282283

ABSTRACT

The capability to respond to wounding is a process shared by organisms of different kingdoms that can result in the regeneration of whole-body parts or lost structures or organs. Filamentous fungi constitute a rich food source that ensures survival and reproduction of their predators and are therefore continuously exposed to mechanical damage. Nevertheless, our understanding of how fungi respond to wounding and predators is scarce. Fungi like plants and animals respond to injury recognizing Damage- and Microbe-Associated Molecular Patterns (DAMPs/MAMPs) that activate Ca2+ and Mitogen-Activated Protein Kinase dependent signaling for the activation of defense mechanisms. During herbivory, plants, in addition to activating pathways related to injury, activate specific responses to combat their predators. Using a transcriptional approach, we studied the capacity of the filamentous fungus Trichoderma atroviride to activate specific responses to injury and attack by different arthropods. Attack by Drosophila melanogaster inhibited the transcriptional activation of genes required for hyphal regeneration, and the fungal innate immune and chemical defense responses. We also provide mechanistic insight of this inhibition involving components of the D. melanogaster salivary glands that repress the expression of a set of genes and block hyphal regeneration.


Subject(s)
Trichoderma , Animals , Defense Mechanisms , Drosophila , Drosophila melanogaster/genetics , Hypocreales , Trichoderma/genetics , Trichoderma/metabolism
3.
Plants (Basel) ; 10(9)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34579451

ABSTRACT

Here, we analyzed the effects on Capsicum annuum plants of Trichoderma atroviride P. Karst strains altered in the expression of SWOLLENIN (SWO1), a protein with amorphogenic activity on plant cell wall components. Strains of T. atroviride that overexpressed the Taswo1 gene were constructed as well as deletion mutants. A novel, cheap and accurate method for assessing root colonization was developed. Colonization assays showed that the Taswo1 overexpressing strains invaded the host root better than the WT, resulting in a stronger plant growth-promoting effect. The expression of plant defense marker genes for both the systemic acquired resistance and induced systemic resistance pathways was enhanced in plants inoculated with Taswo1 overexpressing strains, while inoculation with deletion mutant strains resulted in a similar level of expression to that observed upon inoculation with the wild-type strain. Response to pathogen infection was also enhanced in the plants inoculated with the Taswo1 overexpressing strains, and surprisingly, an intermediate level of protection was achieved with the mutant strains. Tolerance to abiotic stresses was also higher in plants inoculated with the Taswo1 overexpressing strains but was similar in plants inoculated with the wild-type or the mutant strains. Compatible osmolyte production in drought conditions was studied. This study may contribute to improving Trichoderma biocontrol and biofertilization abilities.

4.
Appl Environ Microbiol ; 85(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30389761

ABSTRACT

The response to injury represents an important strategy for animals and plants to survive mechanical damage and predation. Plants respond to injury by activating a defense response that includes the production of an important variety of compounds that help them withstand predator attack and recover from mechanical injury (MI). Similarly, the filamentous fungus Trichoderma atroviride responds to MI by strongly modifying its transcriptional profile and producing asexual reproduction structures (conidia). Here, we analyzed whether the response to MI in T. atroviride is related to a possible predator defense mechanism from a metabolic perspective. We found that the production of specific groups of secondary metabolites increases in response to MI but is reduced after fungivory by Drosophila melanogaster larvae. We further show that fungivory results in repression of the expression of genes putatively involved in the regulation of secondary metabolite production in T. atroviride Activation of secondary metabolite production appears to depend on the mitogen-activated protein kinase (MAPK) Tmk3. Interestingly, D. melanogaster larvae preferred to feed on a tmk3 gene replacement mutant rather than on the wild-type strain. Consumption of the mutant strain, however, resulted in increased larval mortality.IMPORTANCE Fungi, like other organisms, have natural predators, including fungivorous nematodes and arthropods that use them as an important food source. Thus, they require mechanisms to detect and respond to injury. Trichoderma atroviride responds to mycelial injury by rapidly regenerating its hyphae and developing asexual reproduction structures. Whether this injury response is associated with attack by fungivorous insects is unknown. Therefore, determining the possible conservation of a defense mechanism to predation in T. atroviride and plants and elucidating the mechanisms involved in the establishment of this response is of major interest. Here, we describe the chemical response of T. atroviride to mechanical injury and fungivory and the role of a MAPK pathway in the regulation of this response.


Subject(s)
Antibiosis/genetics , Drosophila melanogaster/physiology , Fungal Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Trichoderma/physiology , Animals , Drosophila melanogaster/growth & development , Feeding Behavior , Fungal Proteins/genetics , Larva/growth & development , Larva/physiology , Mitogen-Activated Protein Kinases/genetics , Trichoderma/genetics
5.
PLoS One ; 9(8): e105893, 2014.
Article in English | MEDLINE | ID: mdl-25162614

ABSTRACT

A moderate halophile and thermotolerant fungal strain was isolated from a sugarcane bagasse fermentation in the presence of 2 M NaCl that was set in the laboratory. This strain was identified by polyphasic criteria as Aspergillus caesiellus. The fungus showed an optimal growth rate in media containing 1 M NaCl at 28°C and could grow in media added with up to 2 M NaCl. This strain was able to grow at 37 and 42°C, with or without NaCl. A. caesiellus H1 produced cellulases, xylanases, manganese peroxidase (MnP) and esterases. No laccase activity was detected in the conditions we tested. The cellulase activity was thermostable, halostable, and no differential expression of cellulases was observed in media with different salt concentrations. However, differential band patterns for cellulase and xylanase activities were detected in zymograms when the fungus was grown in different lignocellulosic substrates such as wheat straw, maize stover, agave fibres, sugarcane bagasse and sawdust. Optimal temperature and pH were similar to other cellulases previously described. These results support the potential of this fungus to degrade lignocellulosic materials and its possible use in biotechnological applications.


Subject(s)
Aspergillus/enzymology , Cellulose/chemistry , Fungal Proteins/biosynthesis , Lignin/chemistry , Saccharum/chemistry , Aspergillus/growth & development , Hydrogen-Ion Concentration , Sodium Chloride/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...