Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 314: 120236, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36183871

ABSTRACT

Arsenic (As) is among the most dangerous metalloids and is harmful to human wellbeing. In this laboratory study, Al(III)-modified kapok fibres (Al-Kapok) were used to remove As(V) from water. The sorbent was characterised using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Batch experiments were performed to observe the performance of Al-Kapok in the removal of As(V) and to examine the effects of pH, temperature, adsorbent dose, and coexisting ions on the adsorption process. The surface of the sorbent changed after aluminium modification, and the results of the batch experiments showed that the adsorption of As(V) occurred mainly via endothermic-spontaneous chemisorption at the solution and solid interface of Al-Kapok. The As(V) removal efficiency was approximately 76%-84%, and it was slightly affected at pH levels below 8.0. Further study showed that the maximum adsorption capacity of Al-Kapok for As(V) was 118 µg/g at 30 °C and pH 6, and notable adverse effects were caused by the presence of SO42-and PO43-. It was also found that the boundary layer and film diffusion contributed more to As(V) adsorption. After five adsorption/desorption cycles, regeneration recovered approximately 92% of the adsorption capacity of Al-Kapok used. Overall, Al-Kapok appears to be a suitable adsorbent material for the purification of As-contaminated water.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Humans , Arsenic/chemistry , Adsorption , Arsenates , Aluminum , Water Purification/methods , Water , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis , Kinetics , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...