Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 21786, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34750416

ABSTRACT

Spaceflight induces hepatic damage, partially owing to oxidative stress caused by the space environment such as microgravity and space radiation. We examined the roles of anti-oxidative sulfur-containing compounds on hepatic damage after spaceflight. We analyzed the livers of mice on board the International Space Station for 30 days. During spaceflight, half of the mice were exposed to artificial earth gravity (1 g) using centrifugation cages. Sulfur-metabolomics of the livers of mice after spaceflight revealed a decrease in sulfur antioxidants (ergothioneine, glutathione, cysteine, taurine, thiamine, etc.) and their intermediates (cysteine sulfonic acid, hercynine, N-acethylserine, serine, etc.) compared to the controls on the ground. Furthermore, RNA-sequencing showed upregulation of gene sets related to oxidative stress and sulfur metabolism, and downregulation of gene sets related to glutathione reducibility in the livers of mice after spaceflight, compared to controls on the ground. These changes were partially mitigated by exposure to 1 g centrifugation. For the first time, we observed a decrease in sulfur antioxidants based on a comprehensive analysis of the livers of mice after spaceflight. Our data suggest that a decrease in sulfur-containing compounds owing to both microgravity and other spaceflight environments (radiation and stressors) contributes to liver damage after spaceflight.


Subject(s)
Gravity, Altered , Liver/metabolism , Space Flight , Sulfur/metabolism , Animals , Gene Expression Profiling , Male , Metabolic Networks and Pathways , Metabolomics , Mice , Mice, Inbred C57BL , Weightlessness
2.
PeerJ ; 8: e10002, 2020.
Article in English | MEDLINE | ID: mdl-33062431

ABSTRACT

Euglena gracilis is a green photosynthetic microalga that swims using its flagellum. This species has been used as a model organism for over half a century to study its metabolism and the mechanisms of its behavior. The development of mass-cultivation technology has led to E. gracilis application as a feedstock in various products such as foods. Therefore, breeding of E. gracilis has been attempted to improve the productivity of this feedstock for potential industrial applications. For this purpose, a characteristic that preserves the microalgal energy e.g., reduces motility, should be added to the cultivars. The objective of this study was to verify our hypothesis that E. gracilis locomotion-defective mutants are suitable for industrial applications because they save the energy required for locomotion. To test this hypothesis, we screened for E. gracilis mutants from Fe-ion-irradiated cell suspensions and established a mutant strain, M 3 - ZFeL, which shows defects in flagellum formation and locomotion. The mutant strain exhibits a growth rate comparable to that of the wild type when cultured under autotrophic conditions, but had a slightly slower growth under heterotrophic conditions. It also stores 1.6 times the amount of paramylon, a crystal of ß-1,3-glucan, under autotrophic culture conditions, and shows a faster sedimentation compared with that of the wild type, because of the deficiency in mobility and probably the high amount of paramylon accumulation. Such characteristics make E. gracilis mutant cells suitable for cost-effective mass cultivation and harvesting.

3.
Biol Open ; 8(2)2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30700402

ABSTRACT

A haptonema is an elongated microtubule-based motile organelle uniquely present in haptophytes. The most notable and rapid movement of a haptonema is 'coiling', which occurs within a few milliseconds following mechanical stimulation in an unknown motor-independent mechanism. Here, we analyzed the coiling process in detail by high-speed filming and showed that haptonema coiling was initiated by left-handed twisting of the haptonema, followed by writhing to form a helix from the distal tip. On recovery from a mechanical stimulus, the helix slowly uncoiled from the proximal region. Electron microscopy showed that the seven microtubules in a haptonema were arranged mostly in parallel but that one of the microtubules often wound around the others in the extended state. A microtubule stabilizer, paclitaxel, inhibited coiling and induced right-handed twisting of the haptonema in the absence of Ca2+, suggesting changes in the mechanical properties of microtubules. Addition of Ca2+ resulted in the conversion of haptonematal twist into the planar bends near the proximal region. These results indicate that switching microtubule conformation, possibly with the aid of Ca2+-binding microtubule-associated proteins is responsible for rapid haptonematal coiling.

4.
Sci Rep ; 9(1): 853, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696857

ABSTRACT

Euglena gracilis is a microalga, which has been used as a model organism for decades. Recent technological advances have enabled mass cultivation of this species for industrial applications such as feedstock in nutritional foods and cosmetics. E. gracilis degrades its storage polysaccharide (paramylon) under hypoxic conditions for energy acquisition by an oxygen-independent process and accumulates high amount of wax-ester as a by-product. Using this sequence of reactions referred to as wax-ester fermentation, E. gracilis is studied for its application in biofuel production. Although the wax-ester production pathway is well characterized, little is known regarding the biochemical reactions underlying the main metabolic route, especially, the existence of an unknown sulfur-compound metabolism implied by the nasty odor generation accompanying the wax-ester fermentation. In this study, we show sulfur-metabolomics of E. gracilis in aerobic and hypoxic conditions, to reveal the biochemical reactions that occur during wax-ester synthesis. Our results helped us in identifying hydrogen sulfide (H2S) as the nasty odor-producing component in wax-ester fermentation. In addition, the results indicate that glutathione and protein degrades during hypoxia, whereas cysteine, methionine, and their metabolites increase in the cells. This indicates that this shift of abundance in sulfur compounds is the cause of H2S synthesis.


Subject(s)
Euglena gracilis/physiology , Hypoxia/metabolism , Sulfur Compounds/isolation & purification , Anaerobiosis , Biofuels , Esters/metabolism , Fermentation , Glucans/metabolism , Hydrogen Sulfide , Metabolomics , Signal Transduction , Sulfur Compounds/metabolism , Waxes/metabolism
5.
J Nutr Sci Vitaminol (Tokyo) ; 64(1): 8-17, 2018.
Article in English | MEDLINE | ID: mdl-29491277

ABSTRACT

ß-Glucans are a class of polysaccharides consisting of D-glucose units that are polymerized primarily via the ß-1,3 glycosidic bonds, in addition to the ß-1,4 and/or ß-1,6 bonds. They are present in various food products such as cereals, mushrooms, and seaweeds and are known for their numerous effects on the human body, depending on their structures, which are diverse. The major physicochemical properties of ß-glucans include their antioxidant property, which is responsible for the scavenging of reactive oxygen species, and their role as dietary fiber for preventing the absorption of cholesterol, for promoting egestion, and for producing short-chain fatty acids in the intestine. Dietary ß-glucans also exert immunostimulatory and antitumor effects by activation of cells of the mucosal immune system via ß-glucan receptors, such as dectin-1. In this review, we elaborate upon the diversity of the structures and functions of ß-glucans present in food, along with discussing their proposed mechanisms of action. In addition to the traditional ß-glucan-containing foods, recent progress in the commercial mass cultivation and supply of an algal species, Euglena gracilis, as a food material is briefly described. Mass production has enabled consumption of paramylon, a Euglena-specific novel ß-glucan source. The biological effects of paramylon are discussed and compared with those of other ß-glucans.


Subject(s)
Chemical Phenomena , beta-Glucans/chemistry , Animals , Anticholesteremic Agents/chemistry , Antineoplastic Agents/chemistry , Euglena gracilis/chemistry , Food Analysis , Glucans/chemistry , Humans , Immunization , Reactive Oxygen Species/metabolism , Th1 Cells/drug effects , Th1 Cells/metabolism , Th2 Cells/drug effects , Th2 Cells/metabolism
6.
PLoS One ; 13(2): e0192404, 2018.
Article in English | MEDLINE | ID: mdl-29447191

ABSTRACT

Euglena gracilis Z (Euglena) is a unicellular, photosynthesizing, microscopic green alga. It contains several nutrients such as vitamins, minerals, and unsaturated fatty acids. In this study, to verify the potential role of Euglena consumption on human health and obesity, we evaluated the effect of Euglena on human adipose-derived stem cells. We prepared a Euglena extract and evaluated its effect on cell growth and lipid accumulation, and found that cell growth was promoted by the addition of the Euglena extract. Interestingly, intracellular lipid accumulation was inhibited in a concentration-dependent manner. Quantitative real-time PCR analysis and western blotting analysis indicated that the Euglena extract suppressed adipocyte differentiation by inhibiting the gene expression of the master regulators peroxisome proliferator-activated receptor-γ (PPARγ) and one of three CCAAT-enhancer-binding proteins (C/EBPα). Further Oil Red O staining experiments indicated that the Euglena extract inhibited the early stage of adipocyte-differentiation. Consistent with these results, we observed that down-regulation of gene expression was involved in the early stage of adipogenesis represented by the sterol regulatory element binding protein 1 c (SREBP1c), two of three CCAAT-enhancer-binding proteins (C/EBPß, C/EBPδ), and the cAMP regulatory element-binding protein (CREB). Taken together, these data suggest that Euglena extract is a promising candidate for the development of a new therapeutic treatment for obesity.


Subject(s)
Adipocytes/cytology , Cell Differentiation , Euglena , Stem Cells/cytology , Adipocytes/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cells, Cultured , Humans , Lipid Metabolism , PPAR gamma/genetics , Stem Cells/metabolism , Sterol Regulatory Element Binding Protein 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...