Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Am J Med Genet A ; 191(7): 1722-1740, 2023 07.
Article in English | MEDLINE | ID: mdl-36987741

ABSTRACT

The TRIO gene encodes a rho guanine exchange factor, the function of which is to exchange GDP to GTP, and hence to activate Rho GTPases, and has been described to impact neurodevelopment. Specific genotype-to-phenotype correlations have been established previously describing striking differentiating features seen in variants located in specific domains of the TRIO gene that are associated with opposite effects on RAC1 activity. Currently, 32 cases with a TRIO gene alteration have been published in the medical literature. Here, we report an additional 25, previously unreported individuals who possess heterozygous TRIO variants and we review the literature. In addition, functional studies were performed on the c.4394A > G (N1465S) and c.6244-2A > G TRIO variants to provide evidence for their pathogenicity. Variants reported by the current study include missense variants, truncating nonsense variants, and an intragenic deletion. Clinical features were previously described and included developmental delay, learning difficulties, microcephaly, macrocephaly, seizures, behavioral issues (aggression, stereotypies), skeletal problems including short, tapering fingers and scoliosis, dental problems (overcrowding/delayed eruption), and variable facial features. Here, we report clinical features that have not been described previously, including specific structural brain malformations such as abnormalities of the corpus callosum and ventriculomegaly, additional psychological and dental issues along with a more recognizable facial gestalt linked to the specific domains of the TRIO gene and the effect of the variant upon the function of the encoded protein. This current study further strengthens the genotype-to-phenotype correlation that was previously established and extends the range of phenotypes to include structural brain abnormalities, additional skeletal, dental, and psychiatric issues.


Subject(s)
Microcephaly , Nervous System Malformations , Humans , Phenotype , Mutation , Mutation, Missense , Microcephaly/genetics
4.
Genet Med ; 23(7): 1315-1324, 2021 07.
Article in English | MEDLINE | ID: mdl-33864021

ABSTRACT

PURPOSE: Several clinical phenotypes including fetal hydrops, central conducting lymphatic anomaly or capillary malformations with arteriovenous malformations 2 (CM-AVM2) have been associated with EPHB4 (Ephrin type B receptor 4) variants, demanding new approaches for deciphering pathogenesis of novel variants of uncertain significance (VUS) identified in EPHB4, and for the identification of differentiated disease mechanisms at the molecular level. METHODS: Ten index cases with various phenotypes, either fetal hydrops, CM-AVM2, or peripheral lower limb lymphedema, whose distinct clinical phenotypes are described in detail in this study, presented with a variant in EPHB4. In vitro functional studies were performed to confirm pathogenicity. RESULTS: Pathogenicity was demonstrated for six of the seven novel EPHB4 VUS investigated. A heterogeneity of molecular disease mechanisms was identified, from loss of protein production or aberrant subcellular localization to total reduction of the phosphorylation capability of the receptor. There was some phenotype-genotype correlation; however, previously unreported intrafamilial overlapping phenotypes such as lymphatic-related fetal hydrops (LRFH) and CM-AVM2 in the same family were observed. CONCLUSION: This study highlights the usefulness of protein expression and subcellular localization studies to predict EPHB4 variant pathogenesis. Our accurate clinical phenotyping expands our interpretation of the Janus-faced spectrum of EPHB4-related disorders, introducing the discovery of cases with overlapping phenotypes.


Subject(s)
Hydrops Fetalis , Receptor, EphB4 , Genetic Association Studies , Humans , Phenotype , Phosphorylation , Receptor, EphB4/genetics
5.
Nat Commun ; 10(1): 1951, 2019 Apr 26.
Article in English | MEDLINE | ID: mdl-31028252

ABSTRACT

This Article contains an error in the last sentence of the 'Variant analysis suggests they are pathogenic' section of the Results, which incorrectly reads 'No truncated PIEZO1 protein products were identified in western blot analysis in GLD1:II.3 and GLD2:II.2 (Fig. 2, Supplementary Fig. 6), suggesting that the truncated protein is not stable and therefore degraded.' This should read 'No full-size PIEZO1 protein products were identified in western blot analysis in GLD1:II.3 and GLD2:II.2 (Fig. 2, Supplementary Fig. 6); the three nonsense mutations are predicted to lead to premature termination of the protein, hence it is possible that those truncated proteins will be non-functional or even unstable and degraded.' The error has not been fixed in the PDF or HTML versions of the Article.

6.
J Clin Invest ; 126(8): 3080-8, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27400125

ABSTRACT

Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate.


Subject(s)
Hydrops Fetalis/genetics , Hydrops Fetalis/metabolism , Mutation , Receptor, EphB4/genetics , Receptor, EphB4/metabolism , Animals , Endothelial Cells/metabolism , Exome , Female , Gene Deletion , Genes, Dominant , HEK293 Cells , Heterozygote , Humans , Lymphatic Vessels/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutation, Missense , Polymorphism, Single Nucleotide
7.
Nat Commun ; 6: 8085, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26333996

ABSTRACT

Generalized lymphatic dysplasia (GLD) is a rare form of primary lymphoedema characterized by a uniform, widespread lymphoedema affecting all segments of the body, with systemic involvement such as intestinal and/or pulmonary lymphangiectasia, pleural effusions, chylothoraces and/or pericardial effusions. This may present prenatally as non-immune hydrops. Here we report homozygous and compound heterozygous mutations in PIEZO1, resulting in an autosomal recessive form of GLD with a high incidence of non-immune hydrops fetalis and childhood onset of facial and four limb lymphoedema. Mutations in PIEZO1, which encodes a mechanically activated ion channel, have been reported with autosomal dominant dehydrated hereditary stomatocytosis and non-immune hydrops of unknown aetiology. Besides its role in red blood cells, our findings indicate that PIEZO1 is also involved in the development of lymphatic structures.


Subject(s)
Anemia, Hemolytic, Congenital/genetics , Craniofacial Abnormalities/genetics , Hydrops Fetalis/genetics , Ion Channels/genetics , Lymphangiectasis, Intestinal/genetics , Lymphedema/genetics , Adolescent , Adult , Blotting, Western , Child , Child, Preschool , Craniofacial Abnormalities/diagnostic imaging , Female , Heterozygote , Humans , Infant, Newborn , Lymphangiectasis, Intestinal/diagnostic imaging , Lymphedema/diagnostic imaging , Lymphoscintigraphy , Male , Mutation , Sequence Analysis, DNA
8.
Eur J Hum Genet ; 23(12): 1634-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25804399

ABSTRACT

Turner syndrome is a complex disorder caused by an absent or abnormal sex chromosome. It affects 1/2000-1/3000 live-born females. Congenital lymphoedema of the hands, feet and neck region (present in over 60% of patients) is a common and key diagnostic indicator, although is poorly described in the literature. The aim of this study was to analyse the medical records of a cohort of 19 Turner syndrome patients attending three specialist primary lymphoedema clinics, to elucidate the key features of the lymphatic phenotype and provide vital insights into its diagnosis, natural history and management. The majority of patients presented at birth with four-limb lymphoedema, which often resolved in early childhood, but frequently recurred in later life. The swelling was confined to the legs and hands with no facial or genital swelling. There was only one case of suspected systemic involvement (intestinal lymphangiectasia). The lymphoscintigraphy results suggest that the lymphatic phenotype of Turner syndrome may be due to a failure of initial lymphatic (capillary) function.


Subject(s)
Edema/diagnosis , Lymphatic System/pathology , Phenotype , Turner Syndrome/diagnosis , Adolescent , Adult , Child , Child, Preschool , Edema/genetics , Female , Humans , Middle Aged , Turner Syndrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...