Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37894742

ABSTRACT

Tooth number anomalies, including hyperdontia and hypodontia, are common congenital dental problems in the dental clinic. The precise number of teeth in a dentition is essential for proper speech, mastication, and aesthetics. Teeth are ectodermal organs that develop from the interaction of a thickened epithelium (dental placode) with the neural-crest-derived ectomesenchyme. There is extensive histological, molecular, and genetic evidence regarding how the tooth number is regulated in this serial process, but there is currently no universal classification for tooth number abnormalities. In this review, we propose a novel regulatory network for the tooth number based on the inherent dentition formation process. This network includes three intuitive directions: the development of a single tooth, the formation of a single dentition with elongation of the continual lamina, and tooth replacement with the development of the successional lamina. This article summarizes recent reports on early tooth development and provides an analytical framework to classify future relevant experiments.


Subject(s)
Anodontia , Tooth Abnormalities , Tooth, Supernumerary , Tooth , Humans , Odontogenesis
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445870

ABSTRACT

Zebrafish (Danio rerio) is a well-established model organism for studying melanocyte biology due to its remarkable similarity to humans. The Wnt signalling pathway is a conserved signal transduction pathway that plays a crucial role in embryonic development and regulates many aspects of the melanocyte lineage. Our study was designed to investigate the effect of Wnt signalling activity on zebrafish melanocyte development and patterning. Stereo-microscopic examinations were used to screen for changes in melanocyte count, specific phenotypic differences, and distribution in zebrafish, while microscopic software tools were used to analyse the differences in pigment dispersion of melanocytes exposed to LiCl (Wnt enhancer) and W-C59 (Wnt inhibitor). Samples exposed to W-C59 showed low melanocyte densities and defects in melanocyte phenotype and patterning, whereas LiCl exposure demonstrated a stimulatory effect on most aspects of melanocyte development. Our study demonstrates the crucial role of Wnt signalling in melanocyte lineage and emphasises the importance of a balanced Wnt signalling level for proper melanocyte development and patterning.


Subject(s)
Zebrafish , beta Catenin , Humans , Animals , Zebrafish/genetics , beta Catenin/metabolism , Melanocytes/metabolism , Wnt Signaling Pathway , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
3.
Cells Dev ; 173: 203823, 2023 03.
Article in English | MEDLINE | ID: mdl-36496080

ABSTRACT

The Mexican tetra (Astyanax mexicanus) is one of the fresh water teleost fish models in evolutionary developmental biology. The existence of two morphs: eyed, pigmented surface fish and blind depigmented cavefish from multiple cave populations, provides a unique system to study adaptive radiation. Compared to the adult surface fish, cavefish have large oral jaws with an increased number of structurally-complex teeth. Early tooth development has not been studied in detail in cavefish populations. In this study, bone-stained growth series and vital dye staining was used to trace the development and replacement of dentitions in Pachón cavefish. Our results show that first tooth eruption was delayed in cavefish compared to the surface fish. In particular, the first tooth eruption cycle persisted until 35 days post fertilization (dpf). Unlike surface fish, there are multicuspid teeth in cavefish first generation dentition. In addition to the teeth in the marginal oral jaw bones, Pachón cavefish have teeth in the ectopterygoid bone of the palatine roof. Next, we characterised the expression of ectodysplasin signalling pathway genes in tooth-forming regions of surface and cavefish. Interestingly, higher expression of Eda and Edar was found in cavefish compared to the surface fish. The altered ectodysplasin expression needs further investigation to confirm the different molecular mechanisms for tooth development in the oral and pharyngeal regions of surface fish and cavefish.


Subject(s)
Characidae , Tooth , Animals , Ectodysplasins/genetics , Characidae/genetics , Biological Evolution , Bone and Bones
4.
FASEB Bioadv ; 4(9): 574-584, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36089978

ABSTRACT

The chemical senses of olfaction and taste are well developed in fish and play a vital role in its various activities such as navigation, mate recognition, and food detection. The small teleost fish Astyanax mexicanus consists of interfertile river-dwelling and cave-dwelling populations, referred to as "surface fish" and "cavefish" respectively. An important anatomical feature of cavefish is the lack of eyes leading them to be referred to as blind fish and suggesting an enhanced functional role for other senses such as taste. In this study, we characterize the expression of bitter taste receptors (T2Rs or Tas2Rs) in A. mexicanus and investigate their functionality in a heterologous expression system. The genome database of A. mexicanus (ensemble and NCBI) showed 7 Tas2Rs, among these Tas2R1, Tas2R3, Tas2R4, and Tas2R114 are well characterized in humans and mice but not in A. mexicanus. Therefore, the 4 Tas2Rs were selected for further analysis and their expression in A. mexicanus was confirmed by in situ hybridization and RT-PCR in early developmental stages. These Tas2Rs are expressed in various oral and extraoral organs (liver, fins, jaws, and gills) in A. mexicanus, and Tas2R1 has maximum expression and is localized throughout the fish body. Using the heterologous expression of A. mexicanus T2Rs in HEK293T cells coupled with cell-based calcium mobilization assays, we show that A. mexicanus T2Rs are activated by commonly used fish food and known bitter agonists, including quinine. This study provides novel insights into the extraoral expression of T2Rs in A. mexicanus and suggests their importance in extraoral food detection.

5.
Toxics ; 10(9)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36136509

ABSTRACT

Alcohol is a common addictive substance and prenatal alcohol exposure could cause fetal alcohol spectrum disorder (FASD) and can lead to various birth defects. The small teleost zebrafish (Danio rerio) has been identified as a fine animal model in developmental biology and toxicological research. Zebrafish models are widely used to study the harmful effects of alcohol and limited studies are available on the craniofacial and skin malformations associated with FASD. The present study attempts to investigate the effect of alcohol on early zebrafish embryonic development. The effects of prenatal alcohol exposure on neural crest cell-derived organ formation, including pharyngeal dentition, palatal bones and skin melanocytes were analysed. Whole-mount cartilage and bone staining and imaging techniques were applied to determine the effects of alcohol on the above-mentioned structures. The tooth size and shape were affected by alcohol exposure, but the number of teeth in the pharyngeal dentition was not affected. Only first-generation teeth showed size differences. The alcohol-exposed ethmoid bone, which is homologous to the human hard palate, was smaller and less dense in cell arrangement compared with the control medial ethmoid bone. The skin pigmentation defects included reduced melanocyte density, melanin contraction, smaller melanocyte surface area and aberrations in melanosome dispersion, revealing that alcohol significantly influenced and downregulated each and every step of the melanocyte developmental process. This descriptive study summarises the effects of alcohol on the development of neural crest cell-derived structures and highlights the importance of zebrafish in studying the phenotypic characteristics of fetal alcohol spectrum disorder.

6.
Front Med (Lausanne) ; 8: 656926, 2021.
Article in English | MEDLINE | ID: mdl-33968961

ABSTRACT

The SARS-CoV-2 virus has shaken the globe with an ongoing pandemic of COVID-19 and has set challenges to every corner of the modern health care setting. The oral mucosa and saliva are high risk sites for higher viral loads and dental health care professionals are considered a high risk group. COVID-19-induced oral lesions and loss of taste and smell are common clinical complaints in the dental health care setting. The SARS-CoV-2 virus has been found to cause a wide range of non-specific oral mucosal lesions, but the specific diagnosis of these mucocutaneous lesions as COVID-19 lesions will facilitate the prevention of SARS-CoV-2 in dental health care settings and aid in proper patient management. The reported loss of taste and smell needs further investigation at the receptor level as it will give new insights into SARS-CoV-2 pathogenicity. The high yield of virus in the salivary secretion is a common finding in this infection and ongoing research is focusing on developing saliva as a rapid diagnostic fluid in COVID-19. In this review, we discuss the significance of oral mucosa, saliva and the relevance of the COVID-19 pandemic in dentistry.

7.
Front Oral Health ; 2: 735634, 2021.
Article in English | MEDLINE | ID: mdl-35048051

ABSTRACT

Pregnancy is a tightly regulated immunological state. Mild environmental perturbations can affect the developing fetus significantly. Infections can elicit severe immunological cascades in the mother's body as well as the developing fetus. Maternal infections and resulting inflammatory responses can mediate epigenetic changes in the fetal genome, depending on the developmental stage. The craniofacial development begins at the early stages of embryogenesis. In this review, we will discuss the immunology of pregnancy and its responsive mechanisms on maternal infections. Further, we will also discuss the epigenetic effects of pathogens, their metabolites and resulting inflammatory responses on the fetus with a special focus on craniofacial development. Understanding the pathophysiological mechanisms of infections and dysregulated inflammatory responses during prenatal development could provide better insights into the origins of craniofacial birth defects.

8.
Anat Rec (Hoboken) ; 304(8): 1650-1660, 2021 08.
Article in English | MEDLINE | ID: mdl-33099891

ABSTRACT

Human cleft lip and/or palate (CLP) are immediately recognizable congenital abnormalities of the face. Lip and palate develop from facial primordia through the coordinated activities of ectodermal epithelium and neural crest cells (NCCs) derived from ectomesenchyme tissue. Subtle changes in the regulatory mechanisms of NCC or ectodermal epithelial cells can result in CLP. Genetic and environmental contributions or a combination of both play a significant role in the progression of CLP. Model organisms provide us with a wealth of information in understanding the pathophysiology and genetic etiology of this complex disease. Small teleost, zebrafish (Danio rerio) is one of the popular model in craniofacial developmental biology. The short generation time and large number of optically transparent, easily manipulated embryos increase the value of zebrafish to identify novel candidate genes and gene regulatory networks underlying craniofacial development. In addition, it is widely used to identify the mechanisms of environmental teratogens and in therapeutic drug screening. Here, we discuss the value of zebrafish as a model to understand epithelial and NCC induced ectomesenchymal cell activities during early palate morphogenesis and robustness of the zebrafish in modern research on identifying the genetic and environmental etiological factors of CLP.


Subject(s)
Cleft Lip/metabolism , Cleft Palate/metabolism , Neural Crest/metabolism , Animals , Zebrafish
9.
Dev Dyn ; 248(2): 153-161, 2019 02.
Article in English | MEDLINE | ID: mdl-30450697

ABSTRACT

A small fresh water fish, the Mexican tetra (Astyanax mexicanus) is a novel animal model in evolutionary developmental biology. The existence of morphologically distinct surface and cave morphs of this species allows simultaneous comparative analysis of phenotypic changes at different life stages. The cavefish harbors many favorable constructive traits (i.e., large jaws with an increased number of teeth, neuromast cells, enlarged olfactory pits and excess storage of adipose tissues) and regressive traits (i.e., reduced eye structures and pigmentation) which are essential for cave adaptation. A wide spectrum of natural craniofacial morphologies can be observed among the different cave populations. Recently, the Mexican tetra has been identified as a human disease model. The fully sequenced genome along with modern genome editing tools has allowed researchers to generate transgenic and targeted gene knockouts with phenotypes that resemble human pathological conditions. This review will discuss the anatomy of the craniofacial skeleton of A. mexicanus with a focus on morphologically variable facial bones, jaws that house continuously replacing teeth and pharyngeal skeleton. Furthermore, the possible applications of this model animal in identifying human congenital and metabolic skeletal disorders is addressed. Developmental Dynamics 248:153-161, 2019. © 2018 Wiley Periodicals, Inc.


Subject(s)
Bone Diseases , Bone and Bones/anatomy & histology , Characidae/anatomy & histology , Disease Models, Animal , Adaptation, Biological/genetics , Animals , Caves , Characidae/genetics , Fishes , Humans , Skeleton/anatomy & histology , Skull/anatomy & histology , Tooth
10.
Dev Biol ; 441(2): 235-241, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30017604

ABSTRACT

The phenotype of lens-ablated Mexican tetra (Astyanax mexicanus) compared to wild-type surface fish has been described and includes, among other effects, eye degeneration, changes in tooth number and cranial bone changes. Here, we investigate the spatiotemporal expression patterns of several key genes involved in the development of these structures. Specifically, we show that the expression of pitx2, bmp4 and shh is altered in the eye, oral jaw, nasal pit and forebrain in these lens-ablated fish. Furthermore, for the first time, we show altered pitx2 expression in the cavefish, which also has altered eye and tooth phenotypes. We thus provide evidence for a genetic linkage between the eye and tooth modules in this fish species. Furthermore, the altered pitx2 expression pattern, together with the described morphological features of the lens-ablated fish suggests that Astyanax mexicanus could be considered as an alternative teleost model organism in which to study Axenfeld-Rieger syndrome (ARS), a rare autosomal dominant developmental disorder that is associated with PITX2 and which has both ocular and non-ocular abnormalities.


Subject(s)
Characiformes , Fish Proteins , Gene Expression Regulation, Developmental , Genetic Linkage , Lens, Crystalline/embryology , Tooth/embryology , Animals , Anterior Eye Segment/abnormalities , Anterior Eye Segment/embryology , Characiformes/embryology , Characiformes/genetics , Disease Models, Animal , Eye Abnormalities/embryology , Eye Abnormalities/genetics , Eye Diseases, Hereditary , Fish Proteins/biosynthesis , Fish Proteins/genetics , Lens, Crystalline/pathology
11.
Mech Dev ; 134: 42-54, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25290235

ABSTRACT

The Mexican tetra (Astyanax mexicanus), a freshwater teleost fish, is an excellent vertebrate model organism to study tooth development, specifically the spatiotemporal events related to the development of the oral and pharyngeal dentitions. In contrast to the coordinated early tooth development in the premaxilla and mandible, the maxillary teeth develop much later in life at 60 dpf. By analysing a growth series of bone and cartilage stained tetra and histological sectioning of the tooth bearing bones, we track the developmental events of tooth development over ontogeny of this animal. Whole mount in situ hybridisation with bone morphogenetic proteins and their inhibitor Noggin was conducted to track the late tooth development events. Our data show that the first generation teeth are small and unicuspid irrespective of their location. Oral jaw teeth become multicuspid and large over ontogeny while the pharyngeal dentition remains unicuspid and disorganised. Tooth eruption occurs late in the maxillary bone. The distinct expression pattern of the BMP antagonist, Noggin, suggests that Noggin plays an inhibitory role by preventing early tooth development in the maxillary bone. These data further support and highlight the use of the Mexican tetra in understanding the spatio-temporal differences in tooth development in vertebrate jaws.


Subject(s)
Characidae/growth & development , Gene Expression Regulation, Developmental , Maxillofacial Development/physiology , Tooth/growth & development , Animals , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism
12.
Evodevo ; 4(1): 28, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24099036

ABSTRACT

BACKGROUND: The Mexican tetra (Astyanax mexicanus) has emerged as a good animal model to study the constructive and regressive changes associated with living in cave environments, as both the ancestral sighted morph and the cave dwelling morph are extant. The cave dwelling morphs lack eyes and body pigmentation, but have well developed oral and sensory systems that are essential for survival in dark environments. The cave forms and surface forms are interfertile and give rise to F1 hybrids progeny known as intermediates. In cavefish, degeneration of the lens is one of the key events leading to eye regression. We have previously shown that surgical lens removal in surface fish embryos has an effect on the craniofacial skeleton. Surprisingly, lens removal was also found to have an effect on the caudal teeth in the lower jaw. In order to understand this result, we analyzed the lower jaw and upper jaw dentitions of surface, cavefish and F1 hybrids of surface and cavefish and compared our findings with surface fish that underwent lens removal. We also investigated the upper jaw (premaxillae and maxillae) dentition in these fish. RESULTS: Our tooth analyses shows that cavefish have the highest numbers of teeth in the mandible and maxillae, surface forms have the lowest numbers and F1 hybrids are between these groups. These differences are not observed in the premaxillae. A wide diversity of cuspal morphology can also be found in these fish. Jaw size also differs amongst the groups, with the mandible exhibiting the greatest differences. Interestingly, tooth number in surgery fish is different only in the caudal region of the mandible; this is the region that is constrained in size in all morphs. CONCLUSION: Our data provides the first detailed description of the jaw dentitions of two morphs of Astyanax mexicanus, as well as in F1 hybrids. Tooth number, patterning and cuspal morphology are enhanced in cavefish in all jaws. This is in contrast to the increase in tooth number previously observed on the lens ablated side of the surgery fish. These findings indicate that the mechanisms which govern the constructive traits in cavefish are different to the mechanisms causing an increase tooth number in surgery fish.

SELECTION OF CITATIONS
SEARCH DETAIL
...