Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Nat Commun ; 13(1): 3603, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739103

ABSTRACT

Orientia tsutsugamushi (Ot) is an obligate intracellular bacterium in the family Rickettsiaceae that causes scrub typhus, a severe mite-borne human disease. Its mechanism of cell exit is unusual amongst Rickettsiaceae, as Ot buds off the surface of infected cells enveloped in plasma membrane. Here, we show that Ot bacteria that have budded out of host cells are in a distinct developmental stage compared with intracellular bacteria. We refer to these two stages as intracellular and extracellular bacteria (IB and EB, respectively). These two forms differ in physical properties: IB is both round and elongated, and EB is round. Additionally, IB has higher levels of peptidoglycan and is physically robust compared with EB. The two bacterial forms differentially express proteins involved in bacterial physiology and host-pathogen interactions, specifically those involved in bacterial dormancy and stress response, and outer membrane autotransporter proteins ScaA and ScaC. Whilst both populations are infectious, entry of IB Ot is sensitive to inhibitors of both clathrin-mediated endocytosis and macropinocytosis, whereas entry of EB Ot is only sensitive to a macropinocytosis inhibitor. Our identification and detailed characterization of two developmental forms of Ot significantly advances our understanding of the intracellular lifecycle of an important human pathogen.


Subject(s)
Orientia tsutsugamushi , Scrub Typhus , Cell Wall , Host-Pathogen Interactions , Humans , Membrane Proteins/metabolism , Peptidoglycan/metabolism , Scrub Typhus/microbiology
2.
mBio ; 12(4): e0134221, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34311584

ABSTRACT

Peptidoglycan (PG) is a highly cross-linked peptide-glycan mesh that confers structural rigidity and shape to most bacterial cells. Polymerization of new PG is usually achieved by the concerted activity of two membrane-bound machineries, class-A penicillin binding proteins (aPBPs) and class-B penicillin binding proteins (bPBPs) in complex with shape, elongation, division, and sporulation (SEDS) proteins. Here, we have identified four phylogenetically distinct groups of bacteria that lack any identifiable aPBPs. We performed experiments on a panel of species within one of these groups, the Rickettsiales, and found that bacteria lacking aPBPs build a PG-like cell wall with minimal abundance and rigidity relative to cell walls of aPBP-containing bacteria. This reduced cell wall may have evolved to minimize the activation of host responses to pathogens and endosymbionts while retaining the minimal PG-biosynthesis machinery required for cell elongation and division. We term these "peptidoglycan-intermediate" bacteria, a cohort of host-associated species that includes some human pathogens. IMPORTANCE Peptidoglycan (PG) is a large, cross-linked polymer that forms the cell wall of most bacterial species and confers shape, rigidity, and protection from osmotic shock. It is also a potent stimulator of the immune response in animals. PG is normally polymerized by two groups of enzymes, aPBPs and bPBPs working together with shape, elongation, division, and sporulation (SEDS) proteins. We have identified a diverse set of host-associated bacteria that have selectively lost aPBP genes while retaining bPBP/SEDS and show that some of these build a minimal PG-like structure. It is expected that these minimal cell walls built in the absence of aPBPs improve the evolutionary fitness of host-associated bacteria, potentially through evasion of PG-recognition by the host immune system.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/metabolism , Penicillin-Binding Proteins/metabolism , Peptidoglycan/metabolism , Rickettsiaceae/enzymology , Rickettsiaceae/metabolism , Bacterial Proteins/genetics , Biosynthetic Pathways , Cell Division , Humans , Penicillin-Binding Proteins/classification , Penicillin-Binding Proteins/genetics , Rickettsiaceae/classification , Rickettsiaceae/genetics
3.
J Microbiol Methods ; 169: 105812, 2020 02.
Article in English | MEDLINE | ID: mdl-31862457

ABSTRACT

Despite their clinical and biological importance, the cell biology of obligate intracellular bacteria is less well understood than that of many free-living model organisms. One reason for this is that they are mostly genetically intractable. As a consequence, it is not possible to engineer strains expressing fluorescent proteins and therefore fluorescence light microscopy - a key tool in host-pathogen cell biology studies - is difficult. Strain diversity also limits the universality of antibody-based immunofluorescence approaches. Here, we have developed a universal labelling protocol for intracellular bacteria based on a clickable methionine analog. Whilst we have applied this to obligate intracellular bacteria, we expect it to be useful for labelling free living bacteria as well as other intracellular pathogens.


Subject(s)
Alkynes/chemistry , Bacteria/metabolism , Glycine/analogs & derivatives , Intracellular Space/microbiology , Methionine/analogs & derivatives , Staining and Labeling/methods , Bacteria/classification , Bacteria/genetics , Click Chemistry/methods , Glycine/chemistry , Host-Pathogen Interactions/genetics , Methionine/chemistry
4.
J Cell Sci ; 132(9)2019 05 02.
Article in English | MEDLINE | ID: mdl-30992346

ABSTRACT

Pathogenic Shigella bacteria are a paradigm to address key issues of cell and infection biology. Polar localisation of the Shigella autotransporter protein IcsA is essential for actin tail formation, which is necessary for the bacterium to travel from cell-to-cell; yet how proteins are targeted to the bacterial cell pole is poorly understood. The bacterial actin homologue MreB has been extensively studied in broth culture using model organisms including Escherichia coli, Bacillus subtilis and Caulobacter crescentus, but has never been visualised in rod-shaped pathogenic bacteria during infection of host cells. Here, using single-cell analysis of intracellular Shigella, we discover that MreB accumulates at the cell pole of bacteria forming actin tails, where it colocalises with IcsA. Pharmacological inhibition of host cell actin polymerisation and genetic deletion of IcsA is used to show, respectively, that localisation of MreB to the cell poles precedes actin tail formation and polar localisation of IcsA. Finally, by exploiting the MreB inhibitors A22 and MP265, we demonstrate that MreB polymerisation can support actin tail formation. We conclude that Shigella MreB promotes polar IcsA positioning for actin tail formation, and suggest that understanding the bacterial cytoskeleton during host-pathogen interactions can inspire development of new therapeutic regimes for infection control.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Actins/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Shigella flexneri , Transcription Factors/metabolism , Actin Cytoskeleton , Escherichia coli Proteins , HeLa Cells , Host Microbial Interactions , Humans , Shigella flexneri/cytology , Shigella flexneri/metabolism , Shigella flexneri/pathogenicity
5.
PLoS Med ; 16(3): e1002762, 2019 03.
Article in English | MEDLINE | ID: mdl-30865632

ABSTRACT

BACKGROUND: Seasonal malaria chemoprevention (SMC) is recommended in the Sahel region of Africa for children under 5 years of age, for up to 4 months of the year. It may be appropriate to include older children, and to provide protection for more than 4 months. We evaluated the effectiveness of SMC using sulfadoxine-pyrimethamine plus amodiaquine given over 5 months to children under 10 years of age in Saraya district in south-east Senegal in 2011. METHODS AND FINDINGS: Twenty-four villages, including 2,301 children aged 3-59 months and 2,245 aged 5-9 years, were randomised to receive SMC with community case management (CCM) (SMC villages) or CCM alone (control villages). In all villages, community health workers (CHWs) were trained to treat malaria cases with artemisinin combination therapy after testing with a rapid diagnostic test (RDT). In SMC villages, CHWs administered SMC to children aged 3 months to 9 years once a month for 5 months. The study was conducted from 27 July to 31 December 2011. The primary outcome was malaria (fever or history of fever with a positive RDT). The prevalence of anaemia and parasitaemia was measured in a survey at the end of the transmission season. Molecular markers associated with resistance to SMC drugs were analysed in samples from incident malaria cases and from children with parasitaemia in the survey. SMC was well tolerated with no serious adverse reactions. There were 1,472 RDT-confirmed malaria cases in the control villages and 270 in the SMC villages. Among children under 5 years of age, the rate difference was 110.8/1,000/month (95% CI 64.7, 156.8; p < 0.001) and among children 5-9 years of age, 101.3/1,000/month (95% CI 66.7, 136.0; p < 0.001). The mean haemoglobin concentration at the end of the transmission season was higher in SMC than control villages, by 6.5 g/l (95% CI 2.0, 11; p = 0.007) among children under 5 years of age, and by 5.2 g/l (95% CI 0.4, 9.9; p = 0.035) among children 5-9 years of age. The prevalence of parasitaemia was 18% in children under 5 years of age and 25% in children 5-9 years of age in the control villages, and 5.7% and 5.8%, respectively, in these 2 age groups in the SMC villages, with prevalence differences of 12.5% (95% CI 6.8%, 18.2%; p < 0.001) in children under 5 years of age and 19.3% (95% CI 8.3%, 30.2%; p < 0.001) in children 5-9 years of age. The pfdhps-540E mutation associated with clinical resistance to sulfadoxine-pyrimethamine was found in 0.8% of samples from malaria cases but not in the final survey. Twelve children died in the control group and 14 in the SMC group, a rate difference of 0.096/1,000 child-months (95% CI 0.99, 1.18; p = 0.895). Limitations of this study include that we were not able to obtain blood smears for microscopy for all suspected malaria cases, such that we had to rely on RDTs for confirmation, which may have included false positives. CONCLUSIONS: In this study SMC for children under 10 years of age given over 5 months was feasible, well tolerated, and effective in preventing malaria episodes, and reduced the prevalence of parasitaemia and anaemia. SMC with CCM achieved high coverage and ensured children with malaria were promptly treated with artemether-lumefantrine. TRIAL REGISTRATION: www.clinicaltrials.gov NCT01449045.


Subject(s)
Antimalarials/therapeutic use , Case Management/trends , Community Health Services/trends , Malaria/drug therapy , Malaria/epidemiology , Seasons , Age Distribution , Chemoprevention/methods , Chemoprevention/trends , Child , Child, Preschool , Cluster Analysis , Combined Modality Therapy/methods , Combined Modality Therapy/trends , Community Health Services/methods , Female , Humans , Infant , Malaria/diagnosis , Male , Senegal/epidemiology , Time Factors
6.
Mol Microbiol ; 105(3): 440-452, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28513097

ABSTRACT

Bacterial cell walls are composed of the large cross-linked macromolecule peptidoglycan, which maintains cell shape and is responsible for resisting osmotic stresses. This is a highly conserved structure and the target of numerous antibiotics. Obligate intracellular bacteria are an unusual group of organisms that have evolved to replicate exclusively within the cytoplasm or vacuole of a eukaryotic cell. They tend to have reduced amounts of peptidoglycan, likely due to the fact that their growth and division takes place within an osmotically protected environment, and also due to a drive to reduce activation of the host immune response. Of the two major groups of obligate intracellular bacteria, the cell wall has been much more extensively studied in the Chlamydiales than the Rickettsiales. Here, we present the first detailed analysis of the cell envelope of an important but neglected member of the Rickettsiales, Orientia tsutsugamushi. This bacterium was previously reported to completely lack peptidoglycan, but here we present evidence supporting the existence of a peptidoglycan-like structure in Orientia, as well as an outer membrane containing a network of cross-linked proteins, which together confer cell envelope stability. We find striking similarities to the unrelated Chlamydiales, suggesting convergent adaptation to an obligate intracellular lifestyle.


Subject(s)
Orientia tsutsugamushi/metabolism , Anti-Bacterial Agents/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Orientia tsutsugamushi/chemistry , Orientia tsutsugamushi/genetics , Peptidoglycan/metabolism , Rickettsiaceae/metabolism
7.
J Microbiol Methods ; 130: 169-176, 2016 11.
Article in English | MEDLINE | ID: mdl-27582280

ABSTRACT

Our understanding of the molecular mechanisms of bacterial infection and pathogenesis are disproportionally derived from a small number of well-characterised species and strains. One reason for this is the enormous time and resources required to develop a new organism into experimental system that can be interrogated at the molecular level, in particular with regards to the development of genetic tools. Live cell imaging by fluorescence microscopy is a powerful technique to study biological processes such as bacterial motility, host cell invasion, and bacterial growth and division. In the absence of genetic tools that enable exogenous expression of fluorescent proteins, fluorescent chemical probes can be used to label and track living cells. A large number of fluorescent chemical probes are commercially available, but these have overwhelmingly been applied to the study of eukaryotic cell systems. Here, we present a methodical analysis of four different classes of probes, which can be used to delineate the cytoplasm, nucleic acids, cell membrane or peptidoglycan of living bacterial cells. We have tested these in the context of the important but neglected human pathogen Orientia tsutsugamushi but expect that the methodology would be broadly applicable to other bacterial species.


Subject(s)
Bacteriological Techniques/methods , Cytoplasm/microbiology , Fluorescent Dyes/metabolism , Microscopy, Fluorescence/methods , Orientia tsutsugamushi/cytology , Animals , Bacteria , Cell Culture Techniques , Cell Division , Cell Line , Cell Membrane , Cell Survival , Mice , Microscopy, Confocal , Nucleic Acids , Orientia tsutsugamushi/growth & development , Orientia tsutsugamushi/metabolism , Orientia tsutsugamushi/pathogenicity , Peptidoglycan , Scrub Typhus/microbiology , Staining and Labeling/methods
8.
PLoS Negl Trop Dis ; 9(8): e0004009, 2015.
Article in English | MEDLINE | ID: mdl-26317517

ABSTRACT

BACKGROUND: Scrub typhus is a leading cause of serious febrile illness in rural Southeast Asia. The causative agent, Orientia tsutsugamushi, is an obligate intracellular bacterium that is transmitted to humans by the bite of a Leptotrombidium mite. Research into the basic mechanisms of cell biology and pathogenicity of O. tsutsugamushi has lagged behind that of other important human pathogens. One reason for this is that O. tsutsugamushi is an obligate intracellular bacterium that can only be cultured in mammalian cells and that requires specific methodologies for propagation and analysis. Here, we have performed a body of work designed to improve methods for quantification, propagation, purification and long-term storage of this important but neglected human pathogen. These results will be useful to other researchers working on O. tsutsugamushi and also other obligate intracellular pathogens such as those in the Rickettsiales and Chlamydiales families. METHODOLOGY: A clinical isolate of O. tsutsugamushi was grown in cultured mouse embryonic fibroblast (L929) cells. Bacterial growth was measured using an O. tsutsugamushi-specific qPCR assay. Conditions leading to improvements in viability and growth were monitored in terms of the effect on bacterial cell number after growth in cultured mammalian cells. KEY RESULTS: Development of a standardised growth assay to quantify bacterial replication and viability in vitro. Quantitative comparison of different DNA extraction methods. Quantification of the effect on growth of FBS concentration, daunorubicin supplementation, media composition, host cell confluence at infection and frequency of media replacement. Optimisation of bacterial purification including a comparison of host cell lysis methods, purification temperature, bacterial yield calculations and bacterial pelleting at different centrifugation speeds. Quantification of bacterial viability loss after long term storage and freezing under a range of conditions including different freezing buffers and different rates of freezing. CONCLUSIONS: Here we present a standardised method for comparing the viability of O. tsutsugamushi after purification, treatment and propagation under various conditions. Taken together, we present a body of data to support improved techniques for propagation, purification and storage of this organism. This data will be useful both for improving clinical isolation rates as well as performing in vitro cell biology experiments.


Subject(s)
Bacteriological Techniques/methods , Orientia tsutsugamushi/growth & development , Preservation, Biological/methods , Scrub Typhus/microbiology , Animals , Cell Line , Fibroblasts/microbiology , Humans , Mice , Microbial Viability , Orientia tsutsugamushi/genetics , Orientia tsutsugamushi/isolation & purification
9.
Malar J ; 12: 255, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23870667

ABSTRACT

BACKGROUND: Artesunate/sulphadoxine-pyrimethamine (AS/SP) has been the first-line treatment for falciparum malaria in Sudan since 2004. The impact of this combination on anti-malarial resistance-associated molecular markers has not been investigated. In this study, an evaluation of the efficacy and prevalence of drug resistance alleles (pfcrt, pfmdr1, pfdhfr and pfdhps) eight years after the adoption of AS/SP in eastern Sudan is reported. METHODS: A 28-day follow-up efficacy trial of AS/SP was conducted in eastern Sudan during the 2012 transmission season. Blood smears were collected from patients on days 0, 1, 2, 3, 7, 14, 21 and 28. Blood spots on filter paper were obtained pre-treatment and on the day the patient was parasite positive by microscopy. Genotyping of alleles was performed by qPCR (pfcrt 72-76 and pfmdr1 copy number) and direct sequencing of pfmdr1, pfdhfr and pfdhps. RESULTS: Sixty-three patients out of 68 (93%) completed the 28-day follow-up, adequate clinical, and parasitological response occurred in 90.5% and 85.3% of the patients in the per-protocol and intent-to-treat analyses, respectively. PCR corrected per-protocol efficacy was 93.7%. The enrolment prevalence of pfcrt-CVMNK was 30.2% and pfmdr1-N86 was 40.3%. The pfmdr1 haplotype NFD occurred in 32.8% of pre-treatment samples and was significantly higher than previous reports (Fisher's exact p = 0.0001). The pfdhfr-51I/108N combination occurred in all sequenced isolates and 59R was observed in a single individual. pfdhps substitutions 436A, 437G, 540E, 581G and 613S were observed at 7.8, 77.3, 76.9%, 33.8% and 0.0%, respectively. Treatment failures were associated with the pfdhps haplotype SGEGA at these five codons (OR 7.3; 95% CI 0.65 - 368; p = 0.048). CONCLUSION: The decrease of CQR associated genotypes reflects the formal policy of complete removal of CQ in Sudan. However, the frequency of markers associated with SP failure is increasing in this study area and may be contributing to the treatment efficacy falling below 90%. Further monitoring of AS/SP efficacy and of post-treatment selection of pfdhfr and pfdhps alleles in vivo is required to inform future treatment guidelines.


Subject(s)
Artemisinins/therapeutic use , Drug Resistance , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Adolescent , Adult , Aged , Artemisinins/pharmacology , Child , Child, Preschool , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Female , Gene Dosage , Gene Frequency , Humans , Malaria, Falciparum/parasitology , Male , Middle Aged , Mutant Proteins/genetics , Plasmodium falciparum/enzymology , Plasmodium falciparum/isolation & purification , Prevalence , Pyrimethamine/pharmacology , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Sudan , Sulfadoxine/pharmacology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...