Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Inflammopharmacology ; 32(3): 2061-2073, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564092

ABSTRACT

Autophagy is a crucial process involved in the degradation and recycling of cytoplasmic components which are transported to the lysosomal compartment by autophagosomes. Exosomes are an important means of communication and signaling in both normal and diseased states, and they have a significant role in the transmission and propagation of proteins, especially proteins implicated in neurodegenerative disorders. Autophagy may affect exosomal processing, but whether autophagy controls the release of aggregated ß-amyloid and tau proteins in exosomes of Alzheimer disease (AD) is unclear. Therefore, our study aimed to investigate how modulating autophagy affects the exosomal release of these proteins in animal models of AD. Isolated exosomes from brain tissues of 48 male albino mice were divided into four groups (Negative control, LPS, rapamycin (RAPA), and chloroquine (CQ). LC3 I and LC3 II as well as Aß and Tau proteins levels were determined. All mice undergone Neuro-behavioral tests (Morris Water maze test, Y-maze test, and Novel Object Recognition). Both LPS and CQ groups showed reduced expression levels of LC3 II and LC3 II/LC3 I ratio. In contrast, RAPA group showed a significant increase in both LC3-II expression and LC3-II/LC3-I ratio. The levels of both Aß & Tau in exosomes of CQ & LPS groups were higher. While RAPA group showed a significant diminished levels of tau & Aß proteins. In conclusion, our findings suggest that autophagy alterations in AD can influence the release of Aß and tau proteins through exosomes, which may impact the spread of misfolded proteins in AD. These results highlight a potential innovative therapeutic approach for combating AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Autophagy , Disease Models, Animal , Exosomes , tau Proteins , Animals , Exosomes/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice , Male , Autophagy/drug effects , Autophagy/physiology , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology , Sirolimus/pharmacology , Chloroquine/pharmacology , Maze Learning/drug effects , Maze Learning/physiology
2.
Inflammation ; 46(4): 1493-1511, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37171695

ABSTRACT

Sorafenib is a potent inducer of ferroptosis used to manage hepatocellular carcinoma (HCC). The ferroptosis induced by sorafenib activates the p62-Keap1-Nrf2 pathway. Abnormal activation of Nrf2 reduces sorafenib's efficiency and ferroptosis action and induces sorafenib's resistance. Consequently, our study tried to study the effect of a novel combination of sorafenib and Camptothecin (CPT, Nrf2 inhibitor) to improve sorafenib's ferroptosis action and reduce sorafenib resistance in the treatment of HCC. We evaluated the efficacy of sorafenib and/or CPT using HepG2 and Huh7 cell lines. MTT assay evaluated the anti-proliferation effects. The combination index (CI) and dose reduction index (DRI) were calculated using Isobologram analysis. Malondialdehyde (MDA), total antioxidant capacity (TAC), iron concentration, glutathione peroxidase (GPX4), and glutathione reductase (GR) activity assays were used to determine the ferroptosis action of drugs. Western blot was used to investigate the expression of the implicated proteins. Bioinformatics tools were used to determine the correlation between these proteins. Finally, the HPLC technique is used to measure cellular drug uptake. Our results revealed a strong synergism between sorafenib and CPT. The synergetic combination significantly increases lipid peroxidation and iron concentration, decreases TAC, GPX4 and GR activity, and reduces the expression of both Nrf2 and SLC7A11. The downregulation of Nrf2 expression has a vital role in the reduction of resistance mediators to sorafenib against HCC cells like (p62, MT1G, and ABCG2) and improves the cellular uptake of sorafenib. The current study provided evidence that Nrf2 inhibition by CPT improves sorafenib's sensitivity and reduces sorafenib's resistance via the augmentation of sorafenib's ferroptosis action.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Liver Neoplasms/metabolism , Camptothecin/pharmacology , Camptothecin/therapeutic use , Cell Line, Tumor , Iron/metabolism , Iron/pharmacology , Iron/therapeutic use
3.
Mol Biol Rep ; 50(5): 4339-4345, 2023 May.
Article in English | MEDLINE | ID: mdl-36939965

ABSTRACT

BACKGROUND: Bladder cancer (BC) is recorded as the fifth most common cancer worldwide with high morbidity and mortality. The most urgent problem in BCs is the high recurrence rate as two-thirds of non-muscle-invasive bladder cancer (NMIBC) will develop into muscle-invasive bladder cancer (MIBC), which retains a feature of rapid progress and metastasis. In addition, only a limited number of biomarkers are available for diagnosing BC compared to other cancers. Hence, finding sensitive and specific biomarkers for predicting the diagnosis and prognosis of patients with BC is critically needed. Therefore, this study aimed to determine the expression and clinical significance of urinary lncRNA BLACAT1 as a non-invasively diagnostic and prognostic biomarker to detect and differentiate BCs stages. METHODS AND RESULTS: The expression levels of urinary BLACAT1 were detected by qRT-PCR assay in seventy (70) BC patients with different TNM grades (T0-T3) and twelve (12) healthy subjects as control. BLACAT1 was downregulated in superficial stages (T0 = 0.09 ± 0.02 and T1 = 0.5 ± 0.1) compared to healthy control. Furthermore, in the invasive stages, its levels started to elevate in the T2 stage (1.2 ± 0. 2), and higher levels were detected in the T3 stage with a mean value of (5.2 ± 0.6). This elevation was positively correlated with disease progression. Therefore, BLACAT1 can differentiate between metastatic and non-metastatic stages of BCs. Furthermore, its predictive values are not like to be influenced by schistosomal infection. CONCLUSIONS: Upregulation of BLACAT1 in invasive stages predicted an unfavorable prognosis for patients with BCs, as it contributes to the migration and metastasis of BCs. Therefore, we can conclude that urinary BLACAT1 may be considered a non-invasive promising metastatic biomarker for BCs.


Subject(s)
RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Biomarkers, Tumor/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/genetics
4.
Bioorg Chem ; 128: 106092, 2022 11.
Article in English | MEDLINE | ID: mdl-35985159

ABSTRACT

DPP-4Is are well recognized therapy for type 2 diabetes. In spite of sharing a common mode of action, the chemical diversity among members of DPP-4Is raised the question whether structural differences may result in distinguished activities. DPP-4Is were recently explored as drug repurposing means for treatment of SARS-CoV-2 due to the urgent need for small molecule drugs for controlling infections. The use of DPP-4Is was not correlated with adverse COVID-19-related consequences among patients with type 2 diabetes. Inspired by these reasons and the importance of pyrimidinone ring as DPP-4I with both antioxidant and anti-inflammatory activities, we succeeded to prepare some novel pyrimidinone and thio-pyrimidinone derivatives, which were then screened for their antidiabetic activity and DPP-4 inhibition. In addition, their anti-inflammatory effect on LPS-stimulated RAW 264.7 cells were evaluated. Furthermore, their antioxidant activities were also tested.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Antioxidants/pharmacology , Antioxidants/therapeutic use , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Pyrimidinones/therapeutic use , SARS-CoV-2
5.
J Ethnopharmacol ; 298: 115596, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35987414

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Genus Melaleuca or tea tree species are well known to be an important source of biological active oils and extracts. The biological significance appears in their usage for treatment of several clinical disorder owing to their traditional uses as anti-inflammatory, antibacterial, antifungal, and cytotoxic activities. AIM OF THE STUDY: Our study aimed to investigate the metabolic profile of the M. rugulosa polyphenol-rich fraction along with determination of its anti-inflammatory potential, free radical scavenging and antiaging activities supported with virtual understanding of the mode of action using molecular modeling strategy. MATERIALS AND METHODS: The anti-inflammatory activity of the phenolic rich fraction was investigated through measuring its inhibitory activity against inflammatory mediators viz tumor necrosing factor receptor-2 (TNF-α) and cyclooxygenases 1/2 (COX-1/2) in a cell free and cell-based assays. Moreover, the radical scavenging activity was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), oxygen radical absorbance capacity (ORAC) and ß-carotene assays, while the antiaging activity in anti-elastase, anti-collagenase, and anti-tyrosinase inhibitory assays. Finally, the biological findings were supported with molecular docking study using MOE software. RESULTS: The chromatographic purification of the polyphenol-rich fraction of Melaleuca rugulosa (Link) Craven afforded fourteen phytoconstituents (1-14). The anti-inflammatory gauging experiments demonstrated inhibition of inflammatory-linked enzymes COX-1/2 and the TNF-α at low µg/mL levels in the enzyme-based assays. Further investigation of the underlying mechanism was inferred from the quantification of protein levels and gene expression in the lipopolysaccharide (LPS)-activated murine macrophages (RAW264.7) in vitro model. The results revealed the reduction of protein synthesis of COX-1/2 and TNF-α with the down regulation of gene expression. The cell free in vitro radical scavenging assessment of the polyphenol-rich fraction revealed a significant DPPH reduction, peroxyl radicals scavenging, and ß-carotene peroxidation inhibition. Besides, the polyphenol-rich fraction showed a considerable inhibition of the skin aging-related enzymes as elastase, collagenase, and tyrosinase. Ultimately, the computational molecular modelling studies uncovered the potential binding poses and relevant molecular interactions of the identified polyphenols with their targeted enzymes. Particularly, terflavin C (8) which showed a favorable binding pose at the elastase binding pocket, while rosmarinic acid (14) demonstrated the best binding pose at the COX-2 catalytic domain. In short, natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions. CONCLUSION: Natural polyphenols are potential candidates for the management of free radicals, inflammation, and skin aging related conditions.


Subject(s)
Melaleuca , Animals , Anti-Inflammatory Agents , Antioxidants , Free Radicals , Humans , Inflammation , Melaleuca/chemistry , Mice , Molecular Docking Simulation , Plant Extracts , Polyphenols/chemistry , Tannins , Tumor Necrosis Factor-alpha , beta Carotene
6.
Mol Med Rep ; 26(2)2022 Aug.
Article in English | MEDLINE | ID: mdl-35795973

ABSTRACT

3­ß­hydroxysteroid dehydrogenase 1 (HSD3B1) is shown to affect dihydrotestosterone level in prostatic tissue which is a risk factor for prostate cancer (PC). The present study aimed to determine whether rs33937873 (G313A) and rs6203 (C338T) single nucleotide polymorphisms (SNP) in HSD3B1 gene was a potential risk factor for PC susceptibility and can predict the recurrence of PC in Egyptian patients. A total of 186 Egyptian patients were selected with incident primary PC and compared with 180 age healthy controls. The frequencies and the main effect of rs33937873 and rs6203 in HSD3B1 were compared and investigated between the patients and control using genotyping technique and statistical analysis. The mutant GA genotype of G313A in rs33937873 SNP was considered as an independent risk for PC in the multivariate regression analysis [odds ratio (OR)=2.7, 95% confidence intervals (CI): 1.2­5.5, P=0.01] together with positive history of hypertension (HTN) (OR=6.2, 95% CI: 3.2­12.1, P=0.0001) and begin prostatic hyperplasia (BPH; OR=8.9, 95% CI: 4.5­17.5, P=0.0001). Conversely, in rs6203 (C338T), C allele is considered as major risk allele in the development of PC (OR=1.8, 95% CI: 1.3­2.4, P=0.0003). The univariate logistic regression analyses indicated that CC genotype of rs6203 was a PC risk factor (OR=1.9, 95% CI: 1.3­2.9, P=0.002). In addition, the frequency of the A­C haplotype established by rs33937873­rs6203 was also significantly higher for PC (P=0.013). The predication of PC recurrence was associated only with positive family history (OR=7.7, 95% CI: 2.3­25.9, P=0.001) and not for The G313A and C338T SNPs. These results suggested that the two HSD3B1 polymorphisms rs33937873 and rs6203 may modify the risk of PC, particularly among patients with HTN and history of BPH, suggesting them as prominent future markers for prediction of PC risk.


Subject(s)
Multienzyme Complexes , Progesterone Reductase , Prostatic Hyperplasia , Prostatic Neoplasms , Steroid Isomerases , Genetic Predisposition to Disease , Humans , Male , Multienzyme Complexes/genetics , Neoplasm Recurrence, Local , Polymorphism, Single Nucleotide , Progesterone Reductase/genetics , Prostatic Hyperplasia/genetics , Prostatic Neoplasms/genetics , Steroid Isomerases/genetics
7.
Gene ; 685: 164-169, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30399422

ABSTRACT

BACKGROUND: Levels of CCL20 and its CCR6 receptor are elevated in many autoimmune diseases which help in the recruitment of T helper (Th17) cells to site of inflammation. OBJECTIVES: Determine the value of single nucleotide polymorphism of CCL20 (rs6749704) and IL-17F (rs763780) genes and their concomitant effect on the serum CCL20 level and susceptibility to MS in Egyptian patients. SUBJECTS AND METHODS: Blood samples were collected from 83 patients and 95 healthy subjects. Serum levels of CCL20 were measured by ELISA. The DNA was analyzed for rs6749704 and rs763780 using Genotyping Taqman assay. RESULTS: The mean serum levels of CCL20 in the MS group were significantly higher than healthy group (P < 0.001). Frequencies of CT genotype of rs6749704 in CCL20 gene and C allele in MS patients were significantly higher compared to controls. Also significant increase of rs763780 in IL-17F gene was detected in MS patients. Concomitant polymorphism in both genes in MS patients showed an increase risk to MS rather than individual locus. CONCLUSION: CCL20 may play an important role in the pathogenesis of MS. Both allelic variation of (rs6749704) within CCL20 gene and (rs763780) within IL-17F gene can be considered risk factor for development of MS in Egyptian patients.


Subject(s)
Chemokine CCL20/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Interleukin-17/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide , Alleles , Case-Control Studies , Chemokine CCL20/blood , Egypt , Female , Genotype , Humans , Interleukin-17/blood , Male , Odds Ratio
8.
Indian J Clin Biochem ; 33(2): 163-170, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29651206

ABSTRACT

Urine is a proven source of metabolite biomarkers and has the potential to be a rapid, noninvasive, inexpensive, and efficient diagnostic tool for various human diseases. Despite these advantages, urine is an under-investigated source of biomarkers for multiple sclerosis (MS). The objective was to investigate the level of some urinary metabolites (urea, uric acid and hippuric acid) in patients with MS and correlate their levels to the severity of the disease, MS subtypes and MS treatment. The urine samples were collected from 73 MS patients-48 with RRMS and 25 with SPMS- and age matched 75 healthy controls. The values of urinary urea, uric acid and hippuric acid in MS patients were significantly decreased, and these metabolites in SPMS pattern showed significantly decrease than RRMS pattern. Also showed significant inverse correlation with expanded disability status scale and number of relapses. Accordingly, they may act as a potential urinary biomarkers for MS, and correlate to disease progression.

SELECTION OF CITATIONS
SEARCH DETAIL
...