Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 11(7): 587, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32719328

ABSTRACT

DNA damage triggers cell death mechanisms contributing to neuronal loss and cognitive decline in neurological disorders, including traumatic brain injury (TBI), and as a side effect of chemotherapy. Mithramycin, which competitively targets chromatin-binding sites of specificity protein 1 (Sp1), was used to examine previously unexplored neuronal cell death regulatory mechanisms via rat primary neurons in vitro and after TBI in mice (males). In primary neurons exposed to DNA-damage-inducing chemotherapy drugs in vitro we showed that DNA breaks sequentially initiate DNA-damage responses, including phosphorylation of ATM, H2AX and tumor protein 53 (p53), transcriptional activation of pro-apoptotic BH3-only proteins, and mitochondrial outer membrane permeabilization (MOMP), activating caspase-dependent and caspase-independent intrinsic apoptosis. Mithramycin was highly neuroprotective in DNA-damage-dependent neuronal cell death, inhibiting chemotherapeutic-induced cell death cascades downstream of ATM and p53 phosphorylation/activation but upstream of p53-induced expression of pro-apoptotic molecules. Mithramycin reduced neuronal upregulation of BH3-only proteins and mitochondrial dysfunction, attenuated caspase-3/7 activation and caspase substrates' cleavage, and limited c-Jun activation. Chromatin immunoprecipitation indicated that mithramycin attenuates Sp1 binding to pro-apoptotic gene promoters without altering p53 binding suggesting it acts by removing cofactors required for p53 transactivation. In contrast, the DNA-damage-independent neuronal death models displayed caspase initiation in the absence of p53/BH3 activation and were not protected even when mithramycin reduced caspase activation. Interestingly, experimental TBI triggers a multiplicity of neuronal death mechanisms. Although markers of DNA-damage/p53-dependent intrinsic apoptosis are detected acutely in the injured cortex and are attenuated by mithramycin, these processes may play a reduced role in early neuronal death after TBI, as caspase-dependent mechanisms are repressed in mature neurons while other, mithramycin-resistant mechanisms are active. Our data suggest that Sp1 is required for p53-mediated transactivation of neuronal pro-apoptotic molecules and that mithramycin may attenuate neuronal cell death in conditions predominantly involving DNA-damage-induced p53-dependent intrinsic apoptosis.


Subject(s)
DNA Damage , Neurons/pathology , Plicamycin/pharmacology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Etoposide/pharmacology , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Neurons/drug effects , Neuroprotective Agents/pharmacology , Plicamycin/therapeutic use , Proto-Oncogene Proteins c-jun/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Tumor Suppressor Protein p53/metabolism
2.
Cell Death Dis ; 9(11): 1121, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30401820

ABSTRACT

Traumatic brain injury (TBI) activates multiple neuronal cell death mechanisms, leading to post-traumatic neuronal loss and neurological deficits. TBI-induced cell cycle activation (CCA) in post-mitotic neurons causes regulated cell death involving cyclin-dependent kinase (CDK) activation and initiation of an E2F transcription factor-mediated pro-apoptotic program. Here we examine the mechanisms of CCA-dependent neuronal apoptosis in primary neurons in vitro and in mice exposed to controlled cortical impact (CCI). In contrast to our prior work demonstrating robust neuroprotective effects by CDK inhibitors after TBI, examination of neuronal apoptotic mechanisms in E2F1-/-/E2F2-/- or E2F2-/- transgenic mice following CCI suggests that E2F1 and/or E2F2 likely play only a modest role in neuronal cell loss after brain trauma. To elucidate more critical CCA molecular pathways involved in post-traumatic neuronal cell death, we investigated the neuroprotective effects and mechanisms of the potent CDK inhibitor CR8 in a DNA damage model of cell death in primary cortical neurons. CR8 treatment significantly reduced caspase activation and cleavage of caspase substrates, attenuating neuronal cell death. CR8 neuroprotective effects appeared to reflect inhibition of multiple pathways converging on the mitochondrion, including injury-induced elevation of pro-apoptotic Bcl-2 homology region 3 (BH3)-only proteins Puma and Noxa, thereby attenuating mitochondrial permeabilization and release of cytochrome c and AIF, with reduction of both caspase-dependent and -independent apoptosis. CR8 administration also limited injury-induced deficits in mitochondrial respiration. These neuroprotective effects may be explained by CR8-mediated inhibition of key upstream injury responses, including attenuation of c-Jun phosphorylation/activation as well as inhibition of p53 transactivation of BH3-only targets.


Subject(s)
Brain Injuries, Traumatic/prevention & control , E2F1 Transcription Factor/genetics , E2F2 Transcription Factor/genetics , Neurons/drug effects , Neuroprotective Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Purines/pharmacology , Pyridines/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Caspases/genetics , Caspases/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , DNA Damage , E2F1 Transcription Factor/deficiency , E2F2 Transcription Factor/deficiency , Gene Expression Regulation , JNK Mitogen-Activated Protein Kinases/genetics , JNK Mitogen-Activated Protein Kinases/metabolism , Male , Mice , Mice, Knockout , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Neurons/metabolism , Neurons/pathology , Primary Cell Culture , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
3.
Sci Rep ; 6: 22862, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26953132

ABSTRACT

Obesity is a growing epidemic in developed countries. Obese individuals are susceptible to comorbidities, including cardiovascular disease and metabolic disorder. Increasing the ability of adipose tissue to expend excess energy could improve protection from obesity. One promising target is microRNA (miR)-155-5p. We demonstrate that deletion of miR-155 (-5p and -3p) in female mice prevents diet-induced obesity. Body weight gain did not differ between wild-type (WT) and miR-155 knockout (KO) mice fed control diet (CD); however, miR-155 KO mice fed high-fat diet (HFD) gained 56% less body weight and 74% less gonadal white adipose tissue (WAT) than WT mice. Enhanced WAT thermogenic potential, brown adipose tissue differentiation, and/or insulin sensitivity might underlie this obesity resistance. Indeed, miR-155 KO mice on HFD had 21% higher heat release than WT HFD mice. Compared to WT adipocytes, miR-155 KO adipocytes upregulated brown (Ucp1, Cidea, Pparg) and white (Fabp4, Pnpla2, AdipoQ, Fasn) adipogenic genes, and glucose metabolism genes (Glut4, Irs1). miR-155 deletion abrogated HFD-induced adipocyte hypertrophy and WAT inflammation. Therefore, miR-155 deletion increases adipogenic, insulin sensitivity, and energy uncoupling machinery, while limiting inflammation in WAT, which together could restrict HFD-induced fat accumulation. Our results identify miR-155 as a novel candidate target for improving obesity resistance.


Subject(s)
Adipogenesis/genetics , Adipose Tissue, White/metabolism , Adiposity/genetics , Diet, High-Fat , Insulin Resistance/genetics , MicroRNAs/genetics , Obesity/genetics , Weight Gain/genetics , Adipose Tissue, Brown/metabolism , Animals , Body Weight/genetics , Bone Marrow Transplantation , Female , Gene Deletion , Glucose/metabolism , Mice , Mice, Knockout , Obesity/prevention & control
4.
Am J Physiol Regul Integr Comp Physiol ; 308(6): R489-99, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25552660

ABSTRACT

Obstructive sleep apnea (OSA) is characterized by repetitive upper airway obstruction resulting in cyclic intermittent hypoxia (IH) during sleep in affected individuals. OSA occurs more frequently in postmenopausal than premenopausal women and the severity of OSA increases after menopause. Gonadal hormones can influence brain and behavior; testosterone and estrogens in particular can enhance spatial learning and memory. We hypothesized that estrogens may protect mice from IH-induced hippocampal morphological and behavioral changes. To test this hypothesis we exposed intact or gonadectomized male and female mice to room air or IH [15 cycles/h, 8 h/day, fraction of inspired oxygen (FiO 2) nadir of 5%] for a total of 30 days. During the final 4 days of IH, mice were tested for anxiety- and depressive-like behaviors. After cessation of IH exposure mice were tested on the Barnes maze and passive avoidance tests to assess learning and memory. Ovariectomy paired with IH treatment, impaired spatial learning and memory compared to all other female groups. Intact male mice receiving IH treatment also had impaired learning and memory compared with intact or castrated male mice exposed to room air. Learning and memory changes were mirrored by changes in basilar dendritic length of the CA1 region of the hippocampus. These data suggest that estrogens provide protection against IH-induced deficits, whereas androgens partially exacerbate IH-induced deficits on learning and memory.


Subject(s)
Behavior, Animal , Gonadal Steroid Hormones/metabolism , Hypoxia/metabolism , Hypoxia/psychology , Animals , Anxiety/etiology , Anxiety/metabolism , Anxiety/psychology , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Depression/etiology , Depression/metabolism , Depression/psychology , Disease Models, Animal , Female , Hypoxia/complications , Hypoxia/pathology , Hypoxia/physiopathology , Male , Maze Learning , Memory , Mice , Motor Activity , Orchiectomy , Ovariectomy , Reaction Time , Signal Transduction , Spatial Learning , Time Factors
5.
J Behav Brain Sci ; 5(11): 513-523, 2015 Oct.
Article in English | MEDLINE | ID: mdl-27175311

ABSTRACT

Most adult humans have been infected with Epstein-Barr virus (EBV), which is thought to contribute to the development of chronic fatigue syndrome. Stress is known to influence the immune system and can exacerbate the sickness response. Although a role for psychological stress in the sickness response, particularly in combination with EBV-encoded deoxyuridine triphosphate nucleotidohydrolase (dUTPase) has been established, and the role of physical stressors in these interactions remains unspecified. In this study, we seek to determine the interaction of chronic physical (swim) stress and EBV-encoded dUTPase injection. We hypothesize that a chronic physical stressor will exacerbate the sickness response following EBV-encoded dUTPase injection. To test this hypothesis mice receive daily injections of EBV-encoded dUTPase or vehicle and are subjected to 15 min of swim stress each day for 14 days or left unmanipulated. On the final evening of injections mice undergo behavioral testing. EBV-encoded dUTPase injection alone produces some sickness behaviors. The physical swimming stress does not alter the sickness response.

6.
Chronobiol Int ; 32(4): 557-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25431079

ABSTRACT

During the past century, the prevalence of light at night has increased in parallel with obesity rates. Dim light at night (dLAN) increases body mass in male mice. However, the effects of light at night on female body mass remain unspecified. Thus, female mice were exposed to a standard light/dark (LD; 16 h light at ∼150 lux/8 h dark at ∼0 lux) cycle or to light/dim light at night (dLAN; 16 h light at ∼150 lux/8 h dim light at ∼5 lux) cycles for six weeks. Females exposed to dLAN increased the rate of change in body mass compared to LD mice despite reduced total food intake during weeks five and six, suggesting that dLAN disrupted circadian rhythms resulting in deranged metabolism.


Subject(s)
Body Weight/physiology , Circadian Rhythm/physiology , Light , Obesity/etiology , Animals , Body Mass Index , Female , Mice , Motor Activity/physiology , Photoperiod
7.
Physiol Behav ; 137: 18-24, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25034413

ABSTRACT

Most adult humans have been infected with Epstein-Barr virus (EBV) and carry the latent virus. The EBV genome codes for several proteins that form an early antigen complex important for viral replication; one of these proteins is deoxyuridine triphosphate nucleotidohydrolase (dUTPase). The EBV-encoded dUTPase can induce sickness responses in mice. Because stress can increase latent virus reactivation, we hypothesized that chronic restraint would exacerbate sickness behaviors elicited by EBV-encoded dUTPase. Male Swiss-Webster mice were injected daily for 15 days with either saline or EBV-encoded dUTPase. Additionally, half of the mice from each condition were either restrained for 3h daily or left undisturbed. Restraint stress impaired learning and memory in the passive avoidance chamber; impaired learning and memory was due to EBV-encoded dUTPase injected into restrained mice. EBV-encoded dUTPase induced sickness responses and restraint stress interacts with EBV-encoded dUTPase to exacerbate the sickness response. These data support a role for EBV-encoded dUTPase and restraint stress in altering the pathophysiology of EBV independent of viral replication.


Subject(s)
Herpesvirus 4, Human/genetics , Learning Disabilities/physiopathology , Memory Disorders/physiopathology , Pyrophosphatases/metabolism , Restraint, Physical/adverse effects , Viral Proteins/metabolism , Animals , Avoidance Learning/physiology , Body Temperature/physiology , Body Weight/physiology , Chronic Disease , Eating/physiology , Escherichia coli , Learning Disabilities/etiology , Male , Memory Disorders/etiology , Mice , Motor Activity/physiology , Pyrophosphatases/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stress, Psychological/complications , Stress, Psychological/physiopathology , Viral Proteins/genetics
8.
J Exp Zool A Ecol Genet Physiol ; 321(8): 450-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24962267

ABSTRACT

Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses.


Subject(s)
Circadian Rhythm/radiation effects , Immune System/radiation effects , Phodopus/physiology , Photoperiod , Reproduction/radiation effects , Stress, Physiological/immunology , Animals , Circadian Rhythm/physiology , Cricetinae , Hypersensitivity, Delayed , Immune System/physiology , Light , Phenotype , Reproduction/physiology , Seasons
9.
Eur J Neurosci ; 40(4): 2674-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24893623

ABSTRACT

Photoperiodic organisms monitor environmental day length to engage in seasonally appropriate adaptions in physiology and behavior. Among these adaptations are changes in brain volume and neurogenesis, which have been well described in multiple species of birds, yet few studies have described such changes in the brains of adult mammals. White-footed mice (Peromyscus leucopus) are an excellent species in which to investigate the effects of day length on adult hippocampal neurogenesis, as males, in addition to having reduced hippocampal volume in short days (SD) with concomitant impairments in hippocampus-mediated behaviors, have photoperiod-dependent changes in olfactory bulb neurogenesis. We performed the current experiment to assess the effects of photoperiod on hippocampal neurogenesis longitudinally, using the thymidine analog bromodeoxyuridine at multiple time points across 10 weeks of SD exposure. Compared with counterparts held in long day (LD) lengths, across the first 8 weeks of SD exposure hippocampal neurogenesis was reduced. However, at 10 weeks in SD lengths neurogenic levels in the hippocampus were elevated above those levels in mice held in LD lengths. The current findings are consistent with the natural photoperiodic cycle of hippocampal function in male white-footed mice, and may help to inform research on photoperiodic plasticity in neurogenesis and provide insight into how the complex interplay among the environment, genes and adaptive responses to changing day lengths affects brain structure, function and behavior at multiple levels.


Subject(s)
Dentate Gyrus/physiology , Neurogenesis/physiology , Photoperiod , Stem Cells/physiology , Animals , Cell Survival , Dentate Gyrus/cytology , Male , Peromyscus
10.
Behav Brain Res ; 263: 90-7, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24486255

ABSTRACT

Stressors during early life induce anxiety- and depressive-like responses in adult rodents. Siberian hamsters (Phodopus sungorus) exposed to short days post-weaning also increase adult anxiety- and depressive-like behaviors. To test the hypothesis that melatonin and exposure to stressors early in life interact to alter adult affective responses, we administered melatonin either during the perinatal (gestational day 7 to postnatal day 14) or postnatal (day 15-56) periods and also exposed a subset of dams to restraint during gestation (1 h-2×/day for 4 days). During the final week of injections, depressive-like behaviors were assessed using the sucrose anhedonia and forced swim tests. Hamsters exposed to prenatal restraint and treated with melatonin only during the postnatal period increased depressive-like responses in the forced swim test relative to all other groups. Offspring from restrained dams increased the number of fecal boli produced during the forced swim test, an anxiety-like response. In the present study, prenatal restraint reduced CA1 dendritic branching overall and perinatal melatonin protected hamsters from this restraint-induced reduction. These results suggest that the photoperiodic conditions coincident with birth and early life stressors are important in the development of adult affective responses.


Subject(s)
CA1 Region, Hippocampal/growth & development , CA1 Region, Hippocampal/physiopathology , Depressive Disorder/physiopathology , Melatonin/metabolism , Neurons/pathology , Stress, Psychological/physiopathology , Anhedonia/physiology , Animals , Anxiety/pathology , Anxiety/physiopathology , CA1 Region, Hippocampal/pathology , Cricetinae , Dendrites/pathology , Dendrites/physiology , Depressive Disorder/pathology , Dietary Sucrose , Female , Male , Neurons/physiology , Phodopus , Pregnancy , Prenatal Exposure Delayed Effects/pathology , Prenatal Exposure Delayed Effects/physiopathology , Restraint, Physical , Stress, Psychological/pathology , Swimming
11.
J Biol Rhythms ; 28(4): 262-71, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23929553

ABSTRACT

With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.


Subject(s)
Body Weight/physiology , Circadian Rhythm/physiology , Lighting , Animals , Blood Glucose/metabolism , CLOCK Proteins/biosynthesis , CLOCK Proteins/genetics , Corticosterone/metabolism , Feeding Behavior/physiology , Immunohistochemistry , Light , Male , Mice , Motor Activity , Polymerase Chain Reaction , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiology
12.
Brain Behav Immun ; 34: 39-42, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23743259

ABSTRACT

Several physiological and behavioral processes rely on precisely timed light information derived from the natural solar cycle. Using this information, traits have adapted to allow individuals within specific niches to optimize survival and reproduction, but urbanization by humans has significantly altered natural habitats. Nighttime light exposure alters immune function in several species, which could lead to decreased fitness or survival, particularly in the face of an environmental challenge. We exposed male Siberian hamsters (Phodopus sungorus) to five lux of light at night for four weeks, and then administered six hours of acute restraint stress. Delayed-type hypersensitivity (DTH) response was assessed immediately following stress. Acute restraint increased the DTH reaction in dark nights, but exposure to nighttime light prevented this response. Exposure to light at night prolonged the DTH response in non-stressed control hamsters. These results suggest that light pollution may significantly alter physiological responses in Siberian hamsters, particularly in response to a salient environmental challenge such as stress.


Subject(s)
Hypersensitivity, Delayed/immunology , Light , Stress, Physiological/immunology , Animals , Cricetinae , Male , Phodopus , Time Factors
13.
Am J Physiol Regul Integr Comp Physiol ; 305(1): R78-86, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23657638

ABSTRACT

Obstructive sleep apnea (OSA) and dim light at night (dLAN) have both been independently associated with alterations in mood and cognition. We aimed to determine whether dLAN would interact with intermittent hypoxia (IH), a condition characteristic of OSA, to alter the behavioral, cognitive, and affective responses. Adult male mice were housed in either standard lighting conditions (14:10-h light-dark cycle; 150 lux:0 lux) or dLAN (150 lux:5 lux). Mice were then exposed to IH (15 cycles/h, 8 h/day, FiO2 nadir of 5%) for 3 wk, then tested in assays of affective and cognitive responses; brains were collected for dendritic morphology and PCR analysis. Exposure to dLAN and IH increased anxiety-like behaviors, as assessed in the open field, elevated plus maze, and the light/dark box. dLAN and IH increased depressive-like behaviors in the forced swim test. IH impaired learning and memory performance in the passive avoidance task; however, no differences were observed in spatial working memory, as assessed by y-maze or object recognition. IH combined with dLAN decreased cell body area in the CA1 and CA3 regions of the hippocampus. Overall, IH decreased apical spine density in the CA3, whereas dLAN decreased spine density in the CA1 of the hippocampus. TNF-α gene expression was not altered by IH or lighting condition, whereas VEGF expression was increased by dLAN. The combination of IH and dLAN provokes negative effects on hippocampal dendritic morphology, affect, and cognition, suggesting that limiting nighttime exposure to light in combination with other established treatments may be of benefit to patients with OSA.


Subject(s)
Adaptation, Ocular/physiology , Adaptation, Physiological/physiology , Behavior, Animal/physiology , Circadian Rhythm/physiology , Cognition/physiology , Hypoxia/physiopathology , Light , Affect/physiology , Animals , Depression/physiopathology , Hippocampus/metabolism , Male , Maze Learning/physiology , Mice , Models, Animal , Stress, Physiological/physiology , Swimming/physiology , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...