Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 342: 123098, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38072020

ABSTRACT

High altitude (alpine) lakes are efficient sentinels of environmental processes, including local pollution and long-range atmospheric transfer, because these lakes are highly vulnerable to ongoing climate changes and increasing anthropogenic pressure. Towards improving the knowledge of trace element geochemistry in the water column of alpine lakes, we assessed 64 physico-chemical parameters, including macro- and micronutrients, major and trace element concentrations in the water column of 18 lakes in the Pyrenees, located along the border between France and Spain. Lake depth, morphology, retention time and watershed rock lithology did not exhibit sizable impact on major and trace element concentrations in the water column. However, acidic (pH = 4.7 ± 0.2) lakes were distinctly different from circumneutral lakes (pH = 6.8 ± 0.5) as they exhibited >10 times higher concentrations of SO42- and trace metals (Fe, Mn, Zn, Cd, Pb, Co, Ni, Be, Al, Ga and REEs). While some of these elements clearly mark the presence of sulphide-rich minerals within the watershed (Fe, Zn, Cd and Pb), the increased mobility of lithogenic elements (Be, Al, Ga and REEs) in acidic lakes may reflect the leaching of these elements from silicate dust derived from atmospheric deposits or surrounding granites. At the same time, compared to circumneutral lakes, acidic lake water displayed lower concentrations of dissolved oxyanions (As, Mo, V, B and W) and elevated SO42- concentrations. The latter could lead to efficient Ba removal from the water column. The exploitation of metal ores within the watershed of three lakes clearly impacted high Zn and Cd concentrations observed in their water column, despite two of these lakes not being acidic. We conclude that local impacts have a greater effect on the water column than long-range atmospheric inputs and that dissolved trace element concentration measurements can be used for revealing sulphide-rich minerals or acid mine drainage within the lakes' watershed.


Subject(s)
Metals, Heavy , Trace Elements , Water Pollutants, Chemical , Trace Elements/analysis , Lakes , Water , Altitude , Cadmium , Lead , Minerals , Sulfides , Environmental Monitoring , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis
2.
PLoS Negl Trop Dis ; 15(8): e0009634, 2021 08.
Article in English | MEDLINE | ID: mdl-34403418

ABSTRACT

In 2017, diarrheal diseases were responsible for 606 024 deaths in Sub-Saharan Africa. This situation is due to domestic and recreational use of polluted surface waters, deficits in hygiene, access to healthcare and drinking water, and to weak environmental and health monitoring infrastructures. Escherichia coli (E. coli) is an indicator for the enteric pathogens that cause many diarrheal diseases. The links between E. coli, diarrheal diseases and environmental parameters have not received much attention in West Africa, and few studies have assessed health risks by taking into account hazards and socio-health vulnerabilities. This case study, carried out in Burkina Faso (Bagre Reservoir), aims at filling this knowledge gap by analyzing the environmental variables that play a role in the dynamics of E. coli, cases of diarrhea, and by identifying initial vulnerability criteria. A particular focus is given to satellite-derived parameters to assess whether remote sensing can provide a useful tool to assess the health hazard. Samples of surface water were routinely collected to measure E. coli, enterococci and suspended particulate matter (SPM) at a monitoring point (Kapore) during one year. In addition, satellite data were used to estimate precipitation, water level, Normalized Difference Vegetation Index (NDVI) and SPM. Monthly epidemiological data for cases of diarrhea from three health centers were also collected and compared with microbiological and environmental data. Finally, semi-structured interviews were carried out to document the use of water resources, contact with elements of the hydrographic network, health behavior and condition, and water and health policy and prevention, in order to identify the initial vulnerability criteria. A positive correlation between E. coli and enterococci in surface waters was found indicating that E. coli is an acceptable indicator of fecal contamination in this region. E. coli and diarrheal diseases were strongly correlated with monsoonal precipitation, in situ SPM, and Near Infra-Red (NIR) band between March and November. Partial least squares regression showed that E. coli concentration was strongly associated with precipitation, Sentinel-2 reflectance in the NIR and SPM, and that the cases of diarrhea were strongly associated with precipitation, NIR, E. coli, SPM, and to a lesser extent with NDVI. Moreover, E. coli dynamics were reproduced using satellite data alone, particularly from February to mid-December (R2 = 0.60) as were cases of diarrhea throughout the year (R2 = 0.76). This implies that satellite data could provide an important contribution to water quality monitoring. Finally, the vulnerability of the population was found to increase during the rainy season due to reduced accessibility to healthcare and drinking water sources and increased use of water of poor quality. During this period, surface water is used because it is close to habitations, easy to use and free from monetary or political constraints. This vulnerability is aggravated by marginality and particularly affects the Fulani, whose concessions are often close to surface water (river, lake) and far from health centers.


Subject(s)
Diarrhea/epidemiology , Escherichia coli/isolation & purification , Feces/microbiology , Seasons , Water Microbiology , Burkina Faso/epidemiology , Diarrhea/microbiology , Diarrhea/prevention & control , Humans , Hygiene , Rain , Water Pollution , Water Quality , Water Supply
3.
Sci Rep ; 11(1): 3460, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568764

ABSTRACT

In the basin of Mekong, over 70 million people rely on unimproved surface water for their domestic requirements. Surface water is often contaminated with fecal matter and yet little information exists on the underlying mechanisms of fecal contamination in tropical conditions at large watershed scales. Our objectives were to (1) investigate the seasonality of fecal contamination using Escherichia coli as fecal indicator bacteria (FIB), and (2) establish links between the fecal contamination in stream water and its controlling factors (hydrology and land use). We present the results of (1) a sampling campaign at the outlet of 19 catchments across Lao PDR, in both the dry and the rainy seasons of 2016, and (2) a 10-day interval monitoring conducted in 2017 and 2018 at three point locations of three rivers (Nam Ou, Nam Suang, and Mekong) in northern Lao PDR. Our results show the presence of fecal contamination at most of the sampled sites, with a seasonality characterized by higher and extreme E. coli concentrations occurring during the rainy season. The highest E. coli concentrations, strongly correlated with total suspended sediment concentrations, were measured in catchments dominated by unstocked forest areas, especially in mountainous northern Lao PDR and in Vientiane province.

4.
Sci Total Environ ; 763: 144201, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33385841

ABSTRACT

The chemical composition of thermokarst lake ecosystem components is a crucial indicator of current climate change and permafrost thaw. Despite high importance of macrophytes in shallow permafrost thaw lakes for control of major and trace nutrients in lake water, the trace element (TE) partitioning between macrophytes and lake water and sediments in the permafrost regions remains virtually unknown. Here we sampled dominant macrophytes in thermokarst lakes of discontinuous and continuous permafrost zones in the Western Siberia Lowland (WSL) and measured major and trace elements in plant biomass, lake water, lake sediments and sediment porewater. All six plant species (Hippuris vulgaris L., Glyceria maxima (Hartm.) Holmb., Comarum palustre L., Ranunculus spitzbergensis Hadac, Carex aquatilis Wahlenb s. str., Menyanthes trifoliata L.) sizably accumulated macronutrients (Na, Mg, Ca), micronutrients (B, Mo, Nu, Cu, Zn, Co) and toxicants (As, Cd). Accumulation of other trace elements, including rare earth elements (REE), in macrophytes relative to pore waters and sediments was highly variable among species. Using miltiparametric statistics, we described the behavior of ТЕ across two permafrost zones and identified several group of elements depending on their sources in the lake ecosystems and their affinity to sediments and macrophytes. Under future climate warming and shifting the permafrost border to the north, we anticipate an increasing uptake of heavy metals and lithogenic low mobile elements such as Ti, Al, Cr, As, Cu, Fe, Ni, Ga, Zr, and REEs by macrophytes in the discontinuous permafrost zone and Ba, Zn, Pb and Cd in the continuous permafrost zone. This may eventually diminish transport of metal micronutrients and geochemical tracers from soils to lakes and rivers and further to the Arctic Ocean.


Subject(s)
Metals, Heavy , Permafrost , Water Pollutants, Chemical , Arctic Regions , Ecosystem , Environmental Monitoring , Geologic Sediments , Lakes , Metals, Heavy/analysis , Siberia , Water Pollutants, Chemical/analysis
5.
Water Res ; 186: 116353, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32919140

ABSTRACT

Submerged macrophyte monitoring is a major concern for hydrosystem management, particularly for understanding and preventing the potential impacts of global change on ecological functions and services. Macrophyte distribution assessments in rivers are still primarily realized using field monitoring or manual photo-interpretation of aerial images. Considering the lack of applications in fluvial environments, developing operational, low-cost and less time-consuming tools able to automatically map and monitor submerged macrophyte distribution is therefore crucial to support effective management programs. In this study, the suitability of very fine-scale resolution (50 cm) multispectral Pléiades satellite imagery to estimate submerged macrophyte cover, at the scale of a 1 km river section, was investigated. The performance of nonparametric regression methods (based on two reliable and well-known machine learning algorithms for remote sensing applications, Random Forest and Support Vector Regression) were compared for several spectral datasets, testing the relevance of 4 spectral bands (red, green, blue and near-infrared) and two vegetation indices (the Normalized Difference Vegetation Index, NDVI, and the Green-Red Vegetation Index, GRVI), and for several field sampling configurations. Both machine learning algorithms applied to a Pléiades image were able to reasonably well predict macrophyte cover in river ecosystems with promising performance metrics (R² above 0.7 and RMSE around 20%). The Random Forest algorithm combined to the 4 spectral bands from Pléiades image was the most efficient, particularly for extreme cover values (0% and 100%). Our study also demonstrated that a larger number of fine-scale field sampling entities clearly involved better cover predictions than a smaller number of larger sampling entities.


Subject(s)
Ecosystem , Rivers , Environmental Monitoring , Remote Sensing Technology , Satellite Imagery
6.
Chemosphere ; 241: 124955, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31604198

ABSTRACT

Nowadays, atmospheric pollution has a major impact on the human health and the environment, encouraging the development of biomonitors of the air quality over a wide zone. In this study, the relevance of the epiphyte plants Tillandsia usneoides is studied to estimate the transfer of metal(loid)s from a former Zn and Pb mining zone in the Southeast of Spain (Cartagena-La Unión) to the local atmosphere. Biomonitoring was performed by installing plants in 5 sites along a transect from the main mining area to the urban and the coastal zones. An aliquot of plants was collected in every site every 2 months over 1 year. The Tillandsia usneoides have been observed with SEM-EDX, and analysed by ICP-MS to determine trace element concentrations, magnetic susceptibility signals and Zn and Pb isotopes ratios. Results show that atmospheric particles are distributed homogeneously at the plant surface. By comparing elemental contents in Tillandsia usneoides with regard to the values of the geochemical background of the region of Murcia, significant enrichments are observed in the epiphyte plants for Sb, As, Cd, Zn and Pb. The statistical analyses (decentred PCA and PLS) also suggest that the kinetics of dust deposition is slower for the urban and coastal sites compared to the mining sites and highlight an influence of agricultural activities in Cu deposition. The similarity of isotopic compositions (Zn and Pb) between Tillandsia usneoides, soils and atmospheric particles also put in evidence that these plants could be a powerful tool to trace the source of matter in the atmosphere. Finally, this experiment provides new insight to better understand the foliar absorption mechanisms.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Tillandsia/chemistry , Trace Elements/analysis , Air Pollution/analysis , Atmosphere/analysis , Atmosphere/chemistry , Environmental Pollution/analysis , Metals/analysis , Mining , Soil/chemistry , Spain
7.
Commun Biol ; 2: 133, 2019.
Article in English | MEDLINE | ID: mdl-31044158

ABSTRACT

Dryland ecosystems comprise a balance between woody and herbaceous vegetation. Climate change impacts rainfall timing, which may alter the respective contributions of woody and herbaceous plants on the total vegetation production. Here, we apply 30 years of field-measured woody foliage and herbaceous mass from Senegal and document a faster increase in woody foliage mass (+17 kg ha-1 yr-1) as compared to herbaceous mass (+3 kg ha-1 yr-1). Annual rainfall trends were partitioned into core wet-season rains (+0.7 mm yr-1), supporting a weak but periodic (5-year cycles) increase in herbaceous mass, and early/late rains (+2.1 mm yr-1), explaining the strongly increased woody foliage mass. Satellite observations confirm these findings for the majority of the Sahel, with total herbaceous/woody foliage mass increases by 6%/20%. We conclude that the rainfall recovery in the Sahel does not benefit herbaceous vegetation to the same extent as woody vegetation, presumably favoured by increased early/late rains.


Subject(s)
Climate Change , Desert Climate , Plant Development , Rain , Biomass , Ecosystem , Plant Dispersal , Satellite Imagery , Seasons , Senegal
8.
FEMS Microbiol Ecol ; 94(11)2018 11 01.
Article in English | MEDLINE | ID: mdl-30107549

ABSTRACT

Impact of land use (LU) change on stream environmental conditions and the inhabiting bacterial community remains rarely investigated, especially in tropical montane catchments. We examined the effects of LU change and its legacy along a tropical stream by comparing seasonal patterns of dissolved organic carbon (DOC) / colored dissolved organic matter (CDOM) in relation to variations in structure, diversity and metabolic capacities of particle-attached (PA) and free-living (FL) bacterial communities. We hypothesized that despite seasonal differences, hydrological flows that accumulate allochthonous carbon along the catchment are a major controlling factor of the bacterial community. Surprisingly, local environmental conditions that were largely related to nearby LU and the legacy of LU change were more important for stream bacterial diversity than hydrological connectivity. DOC was strongly correlated with PA richness and diversity. The legacy of LU change between teak plantation and annual crops induced high DOC and high diversity and richness of PA in the adjacent waters, while banana plantations were associated with high diversity of FL. The community structures of both PA and FL differed significantly between seasons. Our results highlight the importance of vicinal LU change and its legacy on aquatic bacterial communities in mixed used tropical watersheds.


Subject(s)
Bacteria/isolation & purification , Rivers/microbiology , Carbon/analysis , Rivers/chemistry , Seasons , Tropical Climate
9.
Sci Rep ; 8(1): 8674, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29875361

ABSTRACT

Burkholderia pseudomallei, causative agent of the often fatal disease melioidosis, dwells in tropical soils and has been found in freshwater bodies. To investigate whether rivers are potential habitats or carriers for B. pseudomallei and to assess its geographical distribution in Laos, we studied 23 rivers including the Mekong, applying culture-based detection methods and PCR to water filters and streambed sediments. B. pseudomallei was present in 9% of the rivers in the dry season and in 57% in the rainy season. We found the pathogen exclusively in Southern and Central Laos, and mainly in turbid river water, while sediments were positive in 35% of the B. pseudomallei-positive sites. Our results provide evidence for a heterogeneous temporal and spatial distribution of B. pseudomallei in rivers in Laos with a clear north-south contrast. The seasonal dynamics and predominant occurrence of B. pseudomallei in particle-rich water suggest that this pathogen is washed out with eroded soil during periods of heavy rainfall and transported by rivers, while river sediments do not seem to be permanent habitats for B. pseudomallei. Rivers may thus be useful to assess the distribution and aquatic dispersal of B. pseudomallei and other environmental pathogens in their catchment area and beyond.

10.
Environ Sci Pollut Res Int ; 23(8): 7828-39, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26758304

ABSTRACT

Burkholderia pseudomallei is the bacterium that causes melioidosis in humans. While B. pseudomallei is known to be endemic in South East Asia (SEA), the occurrence of the disease in other parts of the tropics points towards a potentially large global distribution. We investigated the environmental factors that influence the presence (and absence) of B. pseudomallei in a tropical watershed in SEA. Our main objective was to determine whether there is a link between the presence of the organism in the hydrographic network and the upstream soil and land-use type. The presence of B. pseudomallei was determined using a specific quantitative real-time PCR assay following enrichment culture. Land use, soil, geomorphology, and environmental data were then analyzed using partial least squares discriminant analysis (PLSDA) to compare the B. pseudomallei positive and negative sites. Soil type in the surrounding catchment and turbidity had a strong positive influence on the presence (acrisols and luvisols) or absence (ferralsols) of B. pseudomallei. Given the strong apparent links between soil characteristics, water turbidity, and the presence/absence of B. pseudomallei, actions to raise public awareness about factors increasing the risk of exposure should be undertaken in order to reduce the incidence of melioidosis in regions of endemicity.


Subject(s)
Burkholderia pseudomallei/isolation & purification , Rivers/microbiology , Soil , Tropical Climate , Burkholderia pseudomallei/genetics , Humans , Real-Time Polymerase Chain Reaction , Soil/chemistry , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...