Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biosyst ; 4(4): e1900284, 2020 04.
Article in English | MEDLINE | ID: mdl-32293165

ABSTRACT

Gold nanoparticles can act as photothermal agents to generate local tumor heating and subsequent depletion upon laser exposure. Herein, photothermal heating of four gold nanoparticles and the resulting induced cancer cell death are systematically assessed, within extra- or intracellular localizations. Two state-of-the-art gold nanorods are compared with small nanospheres (single-core) and nanoraspberries (multicore). Heat generation is measured in water dispersion and in cancer cells, using lasers at wavelengths of 680, 808, and 1064 nm, covering the entire range used in photothermal therapy, defined as near infrared first (NIR-I) and second (NIR-II) windows, with NIR-II offering more tissue penetration. When dispersed in water, gold nanospheres provide no significant heating, gold nanorods are efficient in NIR-I, and only gold nanoraspberries are still heating in NIR-II. However, in cells, due to endosomal confinement, all nanoparticles present an absorption red-shift translating visible and NIR-I absorbing nanoparticles into effective NIR-I and NIR-II nanoheaters, respectively. The gold nanorods then become competitive with the multicore nanoparticles (nanoraspberries) in NIR-II. Similarly, once in cells, gold nanospheres can be envisaged for NIR-I heating. Remarkably, nanoraspberries are efficient nanoheaters, whatever the laser applied, and the extra- versus intra-cellular localization demonstrates treatment versatility.


Subject(s)
Endosomes/metabolism , Gold , Metal Nanoparticles , Nanospheres , Nanotubes/chemistry , Neoplasms , Photothermal Therapy , Gold/chemistry , Gold/pharmacokinetics , Gold/pharmacology , Humans , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Nanospheres/chemistry , Nanospheres/therapeutic use , Neoplasms/metabolism , Neoplasms/therapy , PC-3 Cells
2.
Chem Commun (Camb) ; 55(28): 4055-4058, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30875417

ABSTRACT

Gold nanoraspberries were synthesized by a seed-mediated synthesis with polyethylene glycol-functionalized bisphosphonates. The original structure shifted the optical absorption to infrared, revealing very efficient photothermal properties within the 2nd biological transparency window and leading to cancer cell necrosis at moderate intracellular doses and low (safe) laser power.

3.
Beilstein J Nanotechnol ; 9: 2947-2952, 2018.
Article in English | MEDLINE | ID: mdl-30546991

ABSTRACT

A gold therapeutic nanoplatform with the same molecule used as reductant, coating and therapeutic agent has been developed in a one-pot, one-phase process using alendronate, a drug from the bisphosphonate family known for its antitumor effects. In addition, the core made of gold nanoparticles (NPs) brings thermal functionalities under irradiation within the first biological window (650-900 nm). The Au@alendronate nanoplatform thus provided a combined antitumor activity through drug delivery and photothermal therapy. Au@alendronate NPs inhibited in vitro the proliferation of prostate cancer cells (PC3) in a dose-dependent manner, with an IC50 value of 100 µM. Under NIR irradiation a temperature increase was observed leading to a reduction of the IC50 value to 1 µM, with total tumor cell death at 100 µM.

4.
Chemistry ; 22(45): 16022-16027, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27572117

ABSTRACT

Inverse electron demand Diels-Alder (iEDDA) was evaluated for the functionalization of gold nanoparticles. The reaction was first modelled with the free coating molecule 1-hydroxy-1,1-methylenebisphosphonate bearing an alkene functionality (HMBPene). A model tetrazine 3,6-dipyridin-2-yl-1,2,4,5-tetrazine (pyTz) was used, kinetic of the reaction was calculated and coupling products were analysed by NMR and HRMS. The reaction was then transposed at the nanoparticle surface. Gold nanoparticles bearing an alkene functionality were obtained using a one-pot methodology with HMBPene and the tetrazine click chemistry was evaluated at their surface using pyTz. The successful coupling was assessed by XPS measurements. This click-methodology was extended to the conjugation of a NIR probe at the NP surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...