Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Radiat Oncol Biol Phys ; 102(3): 619-626, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30017793

ABSTRACT

PURPOSE: Recent in vivo investigations have shown that short pulses of electrons at very high dose rates (FLASH) are less harmful to healthy tissues but just as efficient as conventional dose-rate radiation to inhibit tumor growth. In view of the potential clinical value of FLASH and the availability of modern proton therapy infrastructures to achieve this goal, we herein describe a series of technological developments required to investigate the biology of FLASH irradiation using a commercially available clinical proton therapy system. METHODS AND MATERIALS: Numerical simulations and experimental dosimetric characterization of a modified clinical proton beamline, upstream from the isocenter, were performed with a Monte Carlo toolkit and different detectors. A single scattering system was optimized with a ridge filter and a high current monitoring system. In addition, a submillimetric set-up protocol based on image guidance using a digital camera and an animal positioning system was also developed. RESULTS: The dosimetric properties of the resulting beam and monitoring system were characterized; linearity with dose rate and homogeneity for a 12 × 12 mm2 field size were assessed. Dose rates exceeding 40 Gy/s at energies between 138 and 198 MeV were obtained, enabling uniform irradiation for radiobiology investigations of small animals in a modified clinical proton beam line. CONCLUSIONS: This approach will enable us to conduct FLASH proton therapy experiments on small animals, specifically for mouse lung irradiation. Dose rates exceeding 40 Gy/s were achieved, which was not possible with the conventional clinical mode of the existing beamline.


Subject(s)
Neoplasms/radiotherapy , Proton Therapy/instrumentation , Animals , Calibration , Computer Simulation , Disease Models, Animal , Equipment Design , Lung/radiation effects , Mice , Monte Carlo Method , Protons , Radiobiology , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
2.
Int J Radiat Oncol Biol Phys ; 95(1): 336-343, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27084651

ABSTRACT

PURPOSE: To assess the planning, treatment, and follow-up strategies worldwide in dedicated proton therapy ocular programs. METHODS AND MATERIALS: Ten centers from 7 countries completed a questionnaire survey with 109 queries on the eye treatment planning system (TPS), hardware/software equipment, image acquisition/registration, patient positioning, eye surveillance, beam delivery, quality assurance (QA), clinical management, and workflow. RESULTS: Worldwide, 28,891 eye patients were treated with protons at the 10 centers as of the end of 2014. Most centers treated a vast number of ocular patients (1729 to 6369). Three centers treated fewer than 200 ocular patients. Most commonly, the centers treated uveal melanoma (UM) and other primary ocular malignancies, benign ocular tumors, conjunctival lesions, choroidal metastases, and retinoblastomas. The UM dose fractionation was generally within a standard range, whereas dosing for other ocular conditions was not standardized. The majority (80%) of centers used in common a specific ocular TPS. Variability existed in imaging registration, with magnetic resonance imaging (MRI) rarely being used in routine planning (20%). Increased patient to full-time equivalent ratios were observed by higher accruing centers (P=.0161). Generally, ophthalmologists followed up the post-radiation therapy patients, though in 40% of centers radiation oncologists also followed up the patients. Seven centers had a prospective outcomes database. All centers used a cyclotron to accelerate protons with dedicated horizontal beam lines only. QA checks (range, modulation) varied substantially across centers. CONCLUSIONS: The first worldwide multi-institutional ophthalmic proton therapy survey of the clinical and technical approach shows areas of substantial overlap and areas of progress needed to achieve sustainable and systematic management. Future international efforts include research and development for imaging and planning software upgrades, increased use of MRI, development of clinical protocols, systematic patient-centered data acquisition, and publishing guidelines on QA, staffing, treatment, and follow-up parameters by dedicated ocular programs to ensure the highest level of care for ocular patients.


Subject(s)
Cancer Care Facilities/standards , Eye Neoplasms/radiotherapy , Melanoma/radiotherapy , Proton Therapy , Surveys and Questionnaires , Uveal Neoplasms/radiotherapy , Canada , Cancer Care Facilities/statistics & numerical data , Cyclotrons , Florida , France , Germany , Humans , Maintenance , Massachusetts , Personnel Staffing and Scheduling , Poland , Proton Therapy/instrumentation , Proton Therapy/standards , Proton Therapy/statistics & numerical data , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy, Computer-Assisted/methods , San Francisco , Switzerland , United Kingdom
3.
J Econ Entomol ; 96(3): 768-76, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12852615

ABSTRACT

Outbreaks of the hemlock looper, Lambdina fiscellaria (Gueneé), are characterized by rapid increase and patchy distribution over widespread areas, which make it difficult to detect impending outbreaks. This is a major problem with this insect. Population forecasting is based on tedious and expensive egg surveys in which eggs are extracted from 1-m branches; careful observation is needed to avoid counting old unhatched eggs of previous year populations. The efficacy of artificial substrates as oviposition traps to sample hemlock looper eggs was tested as a means of improving outbreak detection and population forecasting. A white polyurethane foam substrate (1,095 lb/ft3) used with the Luminoc insect trap, a portable light trap, was highly efficient in sampling eggs of the hemlock looper. Foam strips placed on tree trunks at breast height were less efficient but easier and less expensive to use for the establishment of extensive survey networks. Estimates based on oviposition traps were highly correlated with those obtained from the 1-m branch extraction method. The oviposition trap is a standard, inexpensive, easy, and robust method that can be used by nonspecialists. This technique makes it possible to sample higher numbers of plots in widespread monitoring networks, which is crucial for improving the management of hemlock looper populations.


Subject(s)
Lepidoptera/physiology , Oviposition , Ovum , Plant Diseases/parasitology , Tracheophyta/parasitology , Animals , Female , Plant Diseases/statistics & numerical data , Population Dynamics , Quebec
SELECTION OF CITATIONS
SEARCH DETAIL