Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
New Phytol ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39205436

ABSTRACT

Studies have explored how traits separate plants ecologically and the trade-offs that underpin this separation. However, uncertainty remains as to the taxonomic scale at which traits can predictably separate species. We studied how physiological traits separated three Pinus (Pinus banksiana, Pinus resinosa, and Pinus strobus) species across three sites. We collected traits from four common leaf and branch measurements (light-response curves, CO2-response curves, pressure-volume curves, and hydraulic vulnerability curves) across each species and site. While common, these measurements are not typically measured together due to logistical constraints. Few traits varied across species and sites as expected given the ecological preferences of the species and environmental site characteristics. Some trait trade-offs present at broad taxonomic scales were observed across the three species, but most were absent within species. Certain trade-offs contrasted expectations observed at broader scales but followed expectations given the species' ecological preferences. We emphasize the need to both clarify why certain traits are being studied, as variation in unexpected but ecologically meaningful ways often occurs and certain traits might not vary substantially within a given lineage (e.g. hydraulic vulnerability in Pinus), highlighting the role a trait selection in trait ecology.

2.
Glob Chang Biol ; 30(1): e17116, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273575

ABSTRACT

The scientific community has entered an era of big data. However, with big data comes big responsibilities, and best practices for how data are contributed to databases have not kept pace with the collection, aggregation, and analysis of big data. Here, we rigorously assess the quantity of data for specific leaf area (SLA) available within the largest and most frequently used global plant trait database, the TRY Plant Trait Database, exploring how much of the data were applicable (i.e., original, representative, logical, and comparable) and traceable (i.e., published, cited, and consistent). Over three-quarters of the SLA data in TRY either lacked applicability or traceability, leaving only 22.9% of the original data usable compared with the 64.9% typically deemed usable by standard data cleaning protocols. The remaining usable data differed markedly from the original for many species, which led to altered interpretation of ecological analyses. Though the data we consider here make up only 4.5% of SLA data within TRY, similar issues of applicability and traceability likely apply to SLA data for other species as well as other commonly measured, uploaded, and downloaded plant traits. We end with suggested steps forward for global ecological databases, including suggestions for both uploaders to and curators of databases with the hope that, through addressing the issues raised here, we can increase data quality and integrity within the ecological community.


Subject(s)
Plant Leaves , Plants , Big Data , Databases, Factual , Phenotype
3.
Tree Physiol ; 43(1): 1-15, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36094836

ABSTRACT

Conifers inhabit some of the most challenging landscapes where multiple abiotic stressors (e.g., aridity, freezing temperatures) often co-occur. Physiological tolerance to multiple stressors ('poly-tolerance') is thought to be rare because exposure to one stress generally limits responses to another through functional trade-offs. However, the capacity to exhibit poly-tolerance may be greater when combined abiotic stressors have similar physiological impacts, such as the disruption of hydraulic function imposed by drought or freezing. Here, we reviewed empirical data in light of theoretical expectations for conifer adaptations to drought and freeze-thaw cycles with particular attention to hydraulic traits of the stem and leaf. Additionally, we examined the commonality and spatial distribution of poly-stress along indices of these combined stressors. We found that locations with the highest values of our poly-stress index (PSi) are characterized by moderate drought and moderate freeze-thaw, and most of the global conifer distribution occupies areas of moderate poly-stress. Among traits examined, we found diverse responses to the stressors. Turgor loss point did not correlate with freeze-thaw or drought stress individually, but did with the PSi, albeit inverse to what was hypothesized. Leaf mass per area was more strongly linked with drought stress than the poly-stress and not at all with freeze-thaw stress. In stems, the water potential causing 50% loss of hydraulic conductivity became more negative with increasing drought stress and poly-stress but did not correlate with freeze-thaw stress. For these traits, we identified a striking lack of coverage for substantial portions of species ranges, particularly at the upper boundaries of their respective PSis, demonstrating a critical gap in our understanding of trait prevalence and plasticity along these stress gradients. Future research should investigate traits that confer tolerance to both freeze-thaw and drought stress in a wide range of species across broad geographic scales.


Subject(s)
Tracheophyta , Freezing , Droughts , Cold Temperature , Plant Leaves/physiology , Water/physiology , Cycadopsida
4.
PLoS One ; 17(4): e0266254, 2022.
Article in English | MEDLINE | ID: mdl-35476629

ABSTRACT

Ralstonia solanacearum causes bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in the disaccharide trehalose. Water-stressed plants also accumulate trehalose, which increases drought tolerance via abscisic acid (ABA) signaling. Because R. solanacearum-infected plants suffer reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. We found that R. solanacearum-infected plants differentially expressed drought-associated genes, including those involved in ABA and trehalose metabolism, and had more ABA in xylem sap. Consistent with this, treating tomato roots with ABA reduced both stomatal conductance and stem colonization by R. solanacearum. Treating roots with trehalose increased xylem sap ABA and reduced plant water use by lowering stomatal conductance and temporarily improving water use efficiency. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent tomato defense genes; increased xylem sap levels of SA and other antimicrobial compounds; and increased bacterial wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Finally, trehalose-treated plants were substantially more resistant to bacterial wilt disease. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic disease resistance, possibly through a Damage Associated Molecular Pattern (DAMP) response pathway. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggested that R. solanacearum-infected plants increase trehalose to improve water use efficiency and increase wilt disease resistance. The pathogen may degrade trehalose to counter these efforts. Together, these results suggest that treating tomatoes with exogenous trehalose could be a practical strategy for bacterial wilt management.


Subject(s)
Solanum lycopersicum , Disease Resistance , Droughts , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Salicylic Acid/metabolism , Trehalose/metabolism
5.
Tree Physiol ; 39(8): 1446-1460, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31181151

ABSTRACT

First-year tree seedlings represent a critical demographic life stage, functioning as a bottleneck to forest regeneration. Knowledge of how mortality is related to whole-seedling carbon and water relations is deficient and is required to understand how forest compositions will be altered in future climatic conditions. We performed a greenhouse drought experiment using first-year seedlings of two common pine species found in the Intermountain West, USA. Gas exchange, biomass gain, allometry and xylem water potentials were compared between well-watered and droughted seedlings from emergence until drought-induced mortality. In both species, morphological adjustments to confer drought tolerance, such as increased leaf mass per unit area, were not observed in seedlings exposed to drought, and droughted seedlings maintained photosynthesis and whole-seedling carbon gain well into the experiment. Yet, there were important differences between species in terms of carbon budgets, physiological responses and mortality patterns. In Pinus ponderosa P. & C. Lawson, physiological acclimation to drought was much greater, evident through stronger stomatal regulation and increased water-use efficiency. Photosynthesis and carbon budgets in P. ponderosa were greater than in Pinus contorta Dougl. ex. Loud., and survival was 100% until critical hydraulic thresholds in leaf water content and seedling water potentials were crossed. In P. contorta, physiological adjustments to drought were less, and mortality occurred much sooner and well before injurious hydraulic thresholds were approached. First-year conifer seedlings appear canalized for a suite of functional traits that prioritize short-term carbon gain over long-term drought tolerance, suggesting that conifer seedling survival is linked with carbon limitations, even during drought, with survival in species having narrower carbon survival margins being more hampered by carbon limitations.


Subject(s)
Droughts , Tracheophyta , Photosynthesis , Seedlings , Survivorship , Water
SELECTION OF CITATIONS
SEARCH DETAIL