Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(14): 5385-5402, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38577375

ABSTRACT

Understanding the mechanisms by which electrodes undergo the hydrogen evolution reaction (HER) is necessary to design better materials for aqueous energy storage and conversion. Here, we investigate the HER mechanism on tungsten oxide electrodes, which are stable in acidic electrolytes and can undergo proton-insertion coupled electron transfer concomitant with the HER. Electrochemical characterization showed that anhydrous and hydrated tungsten oxides undergo changes in HER activity coincident with changes in proton composition, with activity in the order HxWO3·H2O > HxWO3 > HxWO3·2H2O. We used operando X-ray diffraction and density functional theory to understand the structural and electronic changes in the materials at high states of proton insertion, when the oxides are most active towards the HER. H0.69WO3·H2O and H0.65WO3 have similar proton composition, structural symmetry, and electronic properties at the onset of the HER, yet exhibit different activity. We hypothesize that the electrochemically inserted protons can diffuse in hydrogen bronzes and participate in the HER. This would render the oxide volume, and not just the surface, as a proton and electron reservoir at high overpotentials. HER activity is highest in HxWO3·H2O, which optimizes both the degree of proton insertion and solid-state proton transport kinetics. Our results highlight the interplay between the HER and proton insertion-coupled electron transfer on transition metal oxides, many of which are non-blocking electrodes towards protons.

2.
Anal Chem ; 96(6): 2435-2444, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294875

ABSTRACT

The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed. Here, we expanded the scope of SEIRAS by introducing a robust hybrid graphene-on-gold substrate, where we monitored electrografting processes occurring at the graphene/electrolyte interface. These electrodes consist of graphene deposited onto a roughened gold-sputtered internal reflection element (IRE) for attenuated total reflectance (ATR) SEIRAS. The capabilities of the graphene-gold IRE were demonstrated by successfully monitoring the electrografting of 4-amino-2,2,6,6-tetramethyl-1-piperidine N-oxyl (4-amino-TEMPO) and 4-nitrobenzene diazonium (4-NBD) in real time. These grafts were characterized using cyclic voltammetry and ATR-SEIRAS, clearly showing the 1520 and 1350 cm-1 NO2 stretches for 4-NBD and the 1240 cm-1 C-C, C-C-H, and N-È® stretch for 4-amino-TEMPO. Successful grafts on graphene did not show the SEIRAS effect, while grafting on gold was not stable for TEMPO and had poorer resolution than on graphene-gold for 4-NBD, highlighting the uniqueness of our approach. The graphene-gold IRE is proficient at resolving the spectral responses of redox transformations, unambiguously demonstrating the real-time detection of surface processes on a graphitic electrode. This work provides ample future directions for real-time spectroelectrochemical investigations of carbon electrodes used for sensing, energy storage, electrocatalysis, and environmental applications.

3.
ACS Appl Mater Interfaces ; 15(21): 26120-26127, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37259284

ABSTRACT

Understanding the deformation of energy storage electrodes at a local scale and its correlation to electrochemical performance is crucial for designing effective electrode architectures. In this work, the effect of electrolyte cation and electrode morphology on birnessite (δ-MnO2) deformation during charge storage in aqueous electrolytes was investigated using a mechanical cyclic voltammetry approach via operando atomic force microscopy (AFM) and molecular dynamics (MD) simulation. In both K2SO4 and Li2SO4 electrolytes, the δ-MnO2 host electrode underwent expansion during cation intercalation, but with different potential dependencies. When intercalating Li+, the δ-MnO2 electrode presents a nonlinear correlation between electrode deformation and electrode height, which is morphologically dependent. These results suggest that the stronger cation-birnessite interaction is the reason for higher local stress heterogeneity when cycling in Li2SO4 electrolyte, which might be the origin of the pronounced electrode degradation in this electrolyte.

4.
Angew Chem Int Ed Engl ; 62(24): e202304218, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37053046

ABSTRACT

Recently, non-Faradaic effects were used to modify the electronic structure and reactivity of electrode-bound species. We hypothesize that these electrostatic perturbations could influence the chemical reactivity of electrolyte species near an electrode in the absence of Faradaic electron transfer. A prime example of non-Faradaic effects is acid-base dissociation near an interface. Here, we probed the near-electrode dissociation of N-heterocycle-BF3 Lewis adducts upon electrode polarization, well outside of the redox potential window of the adducts. Using scanning electrochemical microscopy and confocal fluorescence spectroscopy, we detected a potential-dependent depletion of the adduct near the electrode. We propose an electro-inductive effect where a more positive potential leads to electron withdrawal on the N-heterocycle. This study takes a step forward in the use of electrostatics at electrochemical interfaces for field-driven electrocatalytic and electro-synthetic processes.

5.
J Chem Phys ; 156(6): 064704, 2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35168339

ABSTRACT

The development of new electrocatalysts for the hydrogen evolution reaction (HER) could reduce the dependence on Pt and other rare metals and enable large-scale production of hydrogen with near-zero carbon emissions. Mechanistic insight into the electrocatalytic activity of a material helps to accelerate the development of new electrocatalysts. Alternative electrocatalyst materials such as transition metal oxides and sulfides can undergo insertion reactions that change their properties. Recent reports indicate that the presence of inserted ions can influence the electrocatalytic activity. Here, we utilized a materials chemistry approach to understand the role of proton insertion in the HER activity of the layered tungsten oxide hydrates (WO3·xH2O, x = 1, 2). We synthesized a series of tungsten oxide hydrates along with an octylamine-pillared tungsten oxide (OA-WO3). We used cyclic voltammetry to study the electrochemical reactivity of each material and performed ex situ x-ray diffraction and Raman spectroscopy to understand bulk and surface structural changes during electrochemical cycling. We show an inverse relationship between the degree of proton insertion and HER overpotential in tungsten oxides: the lack of proton insertion leads to a high overpotential for the HER. We discuss three hypotheses for how proton insertion leads to the HER activity in WO3·xH2O: (1) proton insertion changes the electronic band structure of WO3·xH2O, (2) the presence of bulk protons can influence ΔGH,ads at the surface sites, and (3) the inserted protons may participate in the HER mechanism on WO3·xH2O. Overall, this work shows the critical role of proton insertion in enabling the high HER activity in tungsten oxides.

6.
Nat Mater ; 20(12): 1689-1694, 2021 12.
Article in English | MEDLINE | ID: mdl-34341525

ABSTRACT

Nanostructured birnessite exhibits high specific capacitance and nearly ideal capacitive behaviour in aqueous electrolytes, rendering it an important electrode material for low-cost, high-power energy storage devices. The mechanism of electrochemical capacitance in birnessite has been described as both Faradaic (involving redox) and non-Faradaic (involving only electrostatic interactions). To clarify the capacitive mechanism, we characterized birnessite's response to applied potential using ex situ X-ray diffraction, electrochemical quartz crystal microbalance, in situ Raman spectroscopy and operando atomic force microscope dilatometry to provide a holistic understanding of its structural, gravimetric and mechanical responses. These observations are supported by atomic-scale simulations using density functional theory for the cation-intercalated structure of birnessite, ReaxFF reactive force field-based molecular dynamics and ReaxFF-based grand canonical Monte Carlo simulations on the dynamics at the birnessite-water-electrolyte interface. We show that capacitive charge storage in birnessite is governed by interlayer cation intercalation. We conclude that the intercalation appears capacitive due to the presence of nanoconfined interlayer structural water, which mediates the interaction between the intercalated cation and the birnessite host and leads to minimal structural changes.


Subject(s)
Oxides , Water , Oxidation-Reduction , Oxides/chemistry , Water/chemistry , X-Ray Diffraction
7.
Chem Commun (Camb) ; 57(55): 6744-6747, 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34137403

ABSTRACT

Alkali ion insertion into Prussian blue from aqueous electrolytes is characterized with operando AFM and EQCM, showing coupling of current with deformation and mass change rates. Stable cycling occurs only with K+, attributed to its lower hydration energy. The (de)insertion of K+ results in reversible deformation even in the open framework structure.

8.
Front Chem ; 8: 715, 2020.
Article in English | MEDLINE | ID: mdl-32974280

ABSTRACT

Understanding the materials design features that lead to high power electrochemical energy storage is important for applications from electric vehicles to smart grids. Electrochemical capacitors offer a highly attractive solution for these applications, with energy and power densities between those of batteries and dielectric capacitors. To date, the most common approach to increase the capacitance of electrochemical capacitor materials is to increase their surface area by nanostructuring. However, nanostructured materials have several drawbacks including lower volumetric capacitance. In this work, we present a scalable "top-down" strategy for the synthesis of EC electrode materials by electrochemically expanding micron-scale high temperature-derived layered sodium manganese-rich oxides. We hypothesize that the electrochemical expansion induces two changes to the oxide that result in a promising electrochemical capacitor material: (1) interlayer hydration, which improves the interlayer diffusion kinetics and buffers intercalation-induced structural changes, and (2) particle expansion, which significantly improves electrode integrity and volumetric capacitance. When compared with a commercially available activated carbon for electrochemical capacitors, the expanded materials have higher volumetric capacitance at charge/discharge timescales of up to 40 s. This shows that expanded and hydrated manganese-rich oxide powders are viable candidates for electrochemical capacitor electrodes.

9.
Chem Rev ; 120(14): 6738-6782, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32597172

ABSTRACT

There is an urgent global need for electrochemical energy storage that includes materials that can provide simultaneous high power and high energy density. One strategy to achieve this goal is with pseudocapacitive materials that take advantage of reversible surface or near-surface Faradaic reactions to store charge. This allows them to surpass the capacity limitations of electrical double-layer capacitors and the mass transfer limitations of batteries. The past decade has seen tremendous growth in the understanding of pseudocapacitance as well as materials that exhibit this phenomenon. The purpose of this Review is to examine the fundamental development of the concept of pseudocapacitance and how it came to prominence in electrochemical energy storage as well as to describe new classes of materials whose electrochemical energy storage behavior can be described as pseudocapacitive.

10.
ACS Nano ; 12(6): 6032-6039, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29767999

ABSTRACT

The presence of structural water in tungsten oxides leads to a transition in the energy storage mechanism from battery-type intercalation (limited by solid state diffusion) to pseudocapacitance (limited by surface kinetics). Here, we demonstrate that these electrochemical mechanisms are linked to the mechanical response of the materials during intercalation of protons and present a pathway to utilize the mechanical coupling for local studies of electrochemistry. Operando atomic force microscopy dilatometry is used to measure the deformation of redox-active energy storage materials and to link the local nanoscale deformation to the electrochemical redox process. This technique reveals that the local mechanical deformation of the hydrated tungsten oxide is smaller and more gradual than the anhydrous oxide and occurs without hysteresis during the intercalation and deintercalation processes. The ability of layered materials with confined structural water to minimize mechanical deformation likely contributes to their fast energy storage kinetics.

11.
Langmuir ; 33(37): 9314-9323, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28732164

ABSTRACT

The reversible intercalation of multivalent cations, especially Mg2+, into a solid-state electrode is an attractive mechanism for next-generation energy storage devices. These reactions typically exhibit poor kinetics due to a high activation energy for interfacial charge-transfer and slow solid-state diffusion. Interlayer water in V2O5 and MnO2 has been shown to improve Mg2+ intercalation kinetics in nonaqueous electrolytes. Here, the effect of structural water on Mg2+ intercalation in nonaqueous electrolytes is examined in crystalline WO3 and the related hydrated and layered WO3·nH2O (n = 1, 2). Using thin film electrodes, cyclic voltammetry, Raman spectroscopy, X-ray diffraction, and electron microscopy, the energy storage in these materials is determined to involve reversible Mg2+ intercalation. It is found that the anhydrous WO3 can intercalate up to ∼0.3 Mg2+ (75 mAh g-1) and can maintain the monoclinic structure for at least 50 cycles at a cyclic voltammetry sweep rate of 0.1 mV s-1. The kinetics of Mg2+ storage in WO3 are limited by solid-state diffusion, which is similar to its behavior in a Li+ electrolyte. On the other hand, the maximum capacity for Mg2+ storage in WO3·nH2O is approximately half that of WO3 (35 mAh g-1). However, the kinetics of both Mg2+ and Li+ storage in WO3·nH2O are primarily limited by the interface and are thus pseudocapacitive. The stability of the structural water in WO3·nH2O varies: the interlayer water of WO3·2H2O is removed upon exposure to a nonaqueous electrolyte, while the water directly coordinated to W is stable during electrochemical cycling. These results demonstrate that tungsten oxides are potential candidates for Mg2+ cathodes, that in these materials structural water can lead to improved Mg2+ kinetics at the expense of capacity, and that the type of structural water affects stability.

12.
J Phys Chem Lett ; 6(19): 3787-91, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26722871

ABSTRACT

Nickel-rich layered LiMO2 (M = transition metal) oxides doped with iron exhibit high oxygen evolution reaction (OER) activity in alkaline electrolytes. The LiMO2 oxides offer the possibility of investigating the influence of the number of d electrons on OER by tuning the oxidation state of M via chemical or electrochemical delithiation. Accordingly, we investigate here the electrocatalytic behavior of LiNi0.7Co0.3O2 and LiNi0.7Co0.2Fe0.1O2 before and after chemical delithiation. In addition to varying the oxidation state of the transition-metal ions, we find that chemical delithiation also affects the local chemical environment and morphology. The electrochemical response differs depending on whether the delithiation occurred ex situ chemically or in situ during the electrocatalysis. The results point to the important role of in situ transformation in LiMO2 in alkaline electrolytes during electrocatalytic cycling.

13.
Nat Mater ; 12(6): 518-22, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23584143

ABSTRACT

Pseudocapacitance is commonly associated with surface or near-surface reversible redox reactions, as observed with RuO2·xH2O in an acidic electrolyte. However, we recently demonstrated that a pseudocapacitive mechanism occurs when lithium ions are inserted into mesoporous and nanocrystal films of orthorhombic Nb2O5 (T-Nb2O5; refs 1,2). Here, we quantify the kinetics of charge storage in T-Nb2O5: currents that vary inversely with time, charge-storage capacity that is mostly independent of rate, and redox peaks that exhibit small voltage offsets even at high rates. We also define the structural characteristics necessary for this process, termed intercalation pseudocapacitance, which are a crystalline network that offers two-dimensional transport pathways and little structural change on intercalation. The principal benefit realized from intercalation pseudocapacitance is that high levels of charge storage are achieved within short periods of time because there are no limitations from solid-state diffusion. Thick electrodes (up to 40 µm thick) prepared with T-Nb2O5 offer the promise of exploiting intercalation pseudocapacitance to obtain high-rate charge-storage devices.


Subject(s)
Electrochemistry/instrumentation , Electrochemistry/methods , Lithium/chemistry , Electrodes , Intercalating Agents/chemistry , Nanostructures/chemistry , Niobium/chemistry , Oxides/chemistry
14.
Acc Chem Res ; 46(5): 1113-24, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23485203

ABSTRACT

Growing global energy demands coupled with environmental concerns have increased the need for renewable energy sources. For intermittent renewable sources like solar and wind to become available on demand will require the use of energy storage devices. Batteries and supercapacitors, also known as electrochemical capacitors (ECs), represent the most widely used energy storage devices. Supercapacitors are frequently overlooked as an energy storage technology, however, despite the fact that these devices provide greater power, much faster response times, and longer cycle life than batteries. Their limitation is that the energy density of ECs is significantly lower than that of batteries, and this has limited their potential applications. This Account reviews our recent work on improving pseudocapacitive energy storage performance by tailoring the electrode architecture. We report our studies of mesoporous transition metal oxide architectures that store charge through surface or near-surface redox reactions, a phenomenon termed pseudocapacitance. The faradaic nature of pseudocapacitance leads to significant increases in energy density and thus represents an exciting future direction for ECs. We show that both the choice of material and electrode architecture is important for producing the ideal pseudocapacitor device. Here we first briefly review the current state of electrode architectures for pseudocapacitors, from slurry electrodes to carbon/metal oxide composites. We then describe the synthesis of mesoporous films made with amphiphilic diblock copolymer templating agents, specifically those optimized for pseudocapacitive charge storage. These include films synthesized from nanoparticle building blocks and films made from traditional battery materials. In the case of more traditional battery materials, we focus on using flexible architectures to minimize the strain associated with lithium intercalation, that is, the accumulation of lithium ions or atoms between the layers of cathode or anode materials that occurs as batteries charge and discharge. Electrochemical analysis of these mesoporous films allows for a detailed understanding of the origin of charge storage by separating capacitive contributions from traditional diffusion-controlled intercalation processes. We also discuss methods to separate the two contributions to capacitance: double-layer capacitance and pseudocapacitance. Understanding these contributions should allow the selection of materials with an optimized architecture that maximize the contribution from pseudocapacitance. From our studies, we show that nanocrystal-based nanoporous materials offer an architecture optimized for high levels of redox or surface pseudocapacitance. Interestingly, in some cases, materials engineered to minimize the strain associated with lithium insertion can also show intercalation pseudocapacitance, which is a process where insertion processes become so kinetically facile that they appear capacitive. Finally, we conclude with a summary of simple design rules that should result in high-power, high-energy-density electrode architectures. These design rules include assembling small, nanosized building blocks to maximize electrode surface area; maintaining an interconnected, open mesoporosity to facilitate solvent diffusion; seeking flexibility in electrode structure to facilitate volume expansion during lithium insertion; optimizing crystalline domain size and orientation; and creating effective electron transport pathways.

15.
ACS Nano ; 6(7): 6308-17, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22702348

ABSTRACT

An ideal technique for observing nanoscale assembly would provide atomic-resolution images of both the products and the reactants in real time. Using a transmission electron microscope we image in situ the electrochemical deposition of lead from an aqueous solution of lead(II) nitrate. Both the lead deposits and the local Pb(2+) concentration can be visualized. Depending on the rate of potential change and the potential history, lead deposits on the cathode in a structurally compact layer or in dendrites. In both cases the deposits can be removed and the process repeated. Asperities that persist through many plating and stripping cycles consistently nucleate larger dendrites. Quantitative digital image analysis reveals excellent correlation between changes in the Pb(2+) concentration, the rate of lead deposition, and the current passed by the electrochemical cell. Real-time electron microscopy of dendritic growth dynamics and the associated local ionic concentrations can provide new insight into the functional electrochemistry of batteries and related energy storage technologies.


Subject(s)
Electric Power Supplies , Lead , Metal Nanoparticles , Cations, Divalent , Electrochemical Techniques , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning Transmission , Microscopy, Electron, Transmission , Nanotechnology , Solutions , Water
16.
ACS Nano ; 6(7): 6386-99, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22731824

ABSTRACT

Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn(3)O(4) is demonstrated here.

17.
ACS Nano ; 6(5): 4319-27, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22471878

ABSTRACT

Electrical energy storage plays an increasingly important role in modern society. Current energy storage methods are highly dependent on lithium-ion energy storage devices, and the expanded use of these technologies is likely to affect existing lithium reserves. The abundance of sodium makes Na-ion-based devices very attractive as an alternative, sustainable energy storage system. However, electrodes based on transition-metal oxides often show slow kinetics and poor cycling stability, limiting their use as Na-ion-based energy storage devices. The present paper details a new direction for electrode architectures for Na-ion storage. Using a simple hydrothermal process, we synthesized interpenetrating porous networks consisting of layer-structured V(2)O(5) nanowires and carbon nanotubes (CNTs). This type of architecture provides facile sodium insertion/extraction and fast electron transfer, enabling the fabrication of high-performance Na-ion pseudocapacitors with an organic electrolyte. Hybrid asymmetric capacitors incorporating the V(2)O(5)/CNT nanowire composites as the anode operated at a maximum voltage of 2.8 V and delivered a maximum energy of ∼40 Wh kg(-1), which is comparable to Li-ion-based asymmetric capacitors. The availability of capacitive storage based on Na-ion systems is an attractive, cost-effective alternative to Li-ion systems.


Subject(s)
Nanowires , Sodium/chemistry , Electrodes , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...