Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Food Chem ; 452: 139566, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38728892

ABSTRACT

Red pepper powder (RPP) made from ground dried red pepper (Capsicum annuum L.) is prone to adulteration with fungal-spoiled RPP to gain unfair profits in Korea. This study aimed to investigate the effects of fungal infection on the ergosterol and phytosterol content of RPP and evaluate the potential of the sterol content as a marker for identifying fungal-spoiled RPP. Ergosterol was detected only in fungal-spoiled RPP and not in unspoiled RPP [

Subject(s)
Capsicum , Food Contamination , Fungi , Sterols , Capsicum/microbiology , Capsicum/chemistry , Food Contamination/analysis , Fungi/metabolism , Fungi/isolation & purification , Sterols/analysis , Powders/chemistry , Biomarkers/analysis , Phytosterols/analysis , Ergosterol/analysis
2.
Food Sci Biotechnol ; 33(1): 171-180, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186621

ABSTRACT

Following 3R (reduction, refinement, and replacement) principles, we employed the rat liver S9 fraction to mimic liver metabolism of curcumol having high in vitro IC50 on cancer cells. In HCT116 and HT29 colon cancer cells, the metabolites of curcumol by S9 fraction exerted more enhanced activity in inducing cell cycle arrest and apoptosis via regulating the expression of cyclin D1, CDK1, p21, PARP and Bcl-2 than curcumol. In addition, oral administration of curcumol at 4 mg/kg BW significantly suppressed the development of colon tumor induced by azoxymethane/dextran sulfate sodium, and induced cell cycle arrest and apoptosis in tumor tissues. In mass analysis, curcumenol and curzerene were identified as the metabolites of curcumol by S9 fraction metabolism. Taken together, curcumol metabolites showed the enhanced suppressive effect on colon cancer, suggesting that S9 fraction can be considered as simple, fast, and bio-mimicking platform for the screening of chemical libraries on different chronic diseases.

3.
Foods ; 12(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569109

ABSTRACT

This study investigated the effects and active compounds of silkworm pupae, an edible insect, on C2C12 muscle differentiation. The protein of silkworm pupae was extracted using sonication after defatting with hexane. Subsequently, the extract was rehydrated using Alcalase to obtain a protein hydrolysate. The silkworm pupae protein hydrolysate effectively promoted C2C12 myogenic differentiation without cytotoxicity. Subsequently, the hydrolysate was fractionated into four subfractions using preparative high-performance liquid chromatography (Prep-HPLC). Subfraction 1 was the most effective in promoting C2C12 myogenic differentiation and significantly upregulated the expression of myoblast transcription factors, 1.5-fold of myoblast determination protein 1 (MyoD), 2-fold of myogenin, and 3-fold of myosin heavy chain (MyHC). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) and multivariate statistical analysis were used to identify the active peptides in silkworm pupae responsible for the observed effects; then, dipeptides and essential amino acids, such as isoleucine (Ile), valine (Val), and methionine (Met), were identified. In addition, Val, Ile, and two dipeptides underwent quantification to determine the potential bioactive peptides that enhanced C2C12 myogenic differentiation. This study suggests that the peptides from silkworm pupae could be used as a nutraceutical to enhance muscle growth.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985878

ABSTRACT

An electrochemical immunosensor has been developed for the rapid detection and identification of potentially harmful bacteria in food and environmental samples. This study aimed to fabricate a microwire-based electrochemical immunosensor (MEI sensor) for selective detection of Escherichia coli and Staphylococcus aureus in microbial cocktail samples using dielectrophoresis (DEP)-based cell concentration. A gold-coated tungsten microwire was functionalized by coating polyethylenimine, single-walled carbon nanotube (SWCNT) suspension, streptavidin, biotinylated antibodies, and then bovine serum albumin (BSA) solutions. Double-layered SWCNTs and 5% BSA solution were found to be optimized for enhanced signal enhancement and nonspecific binding barrier. The selective capture of E. coli K12 or S. aureus cells was achieved when the electric field in the bacterial sample solution was generated at a frequency of 3 MHz and 20 Vpp. A linear trend of the change in the electron transfer resistance was observed as E. coli concentrations increased from 5.32 × 102 to 1.30 × 108 CFU/mL (R2 = 0.976). The S. aureus MEI sensor fabricated with the anti-S. aureus antibodies also showed an increase in resistance with concentrations of S. aureus (8.90 × 102-3.45 × 107 CFU/mL) with a correlation of R2 = 0.983. Salmonella typhimurium and Listeria monocytogenes were used to evaluate the specificity of the MEI sensors. The functionalization process developed for the MEI sensor is expected to contribute to the sensitive and selective detection of other harmful microorganisms in food and environmental industries.

5.
Toxins (Basel) ; 14(12)2022 11 24.
Article in English | MEDLINE | ID: mdl-36548721

ABSTRACT

Alternaria mycotoxins including alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), altertoxin-I (ATX-I), tentoxin (TEN), and tenuazonic acid (TeA), are ubiquitous contaminants in agricultural products. A method for the simultaneous determination of these six toxins by ultrahigh performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) with solid phase extraction (SPE) was validated in rice, sesame, tomato, and apple juice matrices. The performance of the method was evaluated in terms of linearity (R2 > 0.999), the limit of detection (0.04-1.67 µg/kg), the limit of quantification (0.12-5.06 µg/kg), recovery (80.0-114.7%), and precision (<17.7%). The validated method was applied to monitor 152 marketed food samples in South Korea, as well as to investigate the co-occurrence and correlation between Alternaria toxins. The mean occurrence levels were 2.77 µg/kg for AOH, 4.36 µg/kg for AME, 0.14 µg/kg for ALT, 0.11 µg/kg for ATX-I, 0.43 µg/kg for TEN, and 104.56 µg/kg for TeA. Mean and extreme (95th percentile) daily dietary exposures of South Koreans to Alternaria toxins were estimated to be 22.93 ng/kg b.w./day and 86.07 ng/kg b.w./day, respectively.


Subject(s)
Alternaria , Mycotoxins , Humans , Chromatography, Liquid/methods , Alternaria/chemistry , Tandem Mass Spectrometry/methods , Food, Processed , Food Contamination/analysis , Chromatography, High Pressure Liquid/methods , Mycotoxins/analysis , Tenuazonic Acid/analysis , Lactones/analysis
6.
Food Sci Biotechnol ; 30(13): 1635-1643, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34925939

ABSTRACT

With the growing popularity and demand of pomegranate juice, its adulteration has also steadily increased. In this study, to authenticate pure or adulterated juice, the major components of pomegranate juice were compared with those of grape, peach, and apple juices (which are common adulterants in pomegranate juice) using liquid chromatography-electrospray-tandem mass spectrometry, ion chromatography, and inductively coupled plasma spectrometry. The various parameters evaluated were as follows: the ratio of malic acid to citric acid content, presence of tartaric acid, and levels of glucose, fructose, and mannitol, and sucrose. Potassium was the most abundant mineral in pomegranate juice, and the content ratio of other minerals/potassium did not exceed 0.1. The reliability of this method was confirmed in blind tests and monitoring experiments with commercial pomegranate juice. In conclusion, a simple and effective method was developed to detect adulteration in pomegranate juice.

7.
Biomed Pharmacother ; 135: 111178, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33388598

ABSTRACT

UV irradiation exposure may induce photoaging of the skin tissue. Various plant extracts have been recognized as effective protectants against UV-induced damage. Here, a mixture of marigold and rosemary extracts was evaluated for its anti-photoaging effects as a potential nutraceutical product for skin health. Hexane extract of marigold and ethanolic extract of rosemary were prepared, and the formulated mixture was investigated. A UV-induced photoaged mouse model was prepared, and the protective effects of the extract mixture were compared with those of hyaluronic acid (positive control). Expression of various photoaging-related biomarkers such as matrix metalloproteinases (MMPs), interleukins, tumor necrosis factor-alpha, procollagen type I, 8-hydroxy-deoxyguanosine, superoxide dismutase, glutathione peroxidase, and catalase were determined. UV irradiation significantly enhanced the expression of these biomarkers through an inflammatory response, however, the mixture of marigold and rosemary extracts exerted inhibitory effects and protected from UV-induced damage. Suppression of inflammatory response were the mechanisms underlying this protective function of the mixture of marigold and rosemary extracts. Histological evaluation also supported these protective effects against photoaging.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Plant Extracts/pharmacology , Rosmarinus , Skin Aging/drug effects , Skin/drug effects , Tagetes , Animals , Anti-Inflammatory Agents/isolation & purification , Cytokines/metabolism , HaCaT Cells , Humans , Inflammation Mediators/metabolism , Male , Matrix Metalloproteinases/metabolism , Mice , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Procollagen/metabolism , Rosmarinus/chemistry , Skin/metabolism , Skin/pathology , Skin/radiation effects , Tagetes/chemistry , Ultraviolet Rays
8.
Nutrients ; 12(12)2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33322005

ABSTRACT

Propolis is a resinous substance generated by bees using materials from various plant sources. It has been known to exhibit diverse bioactivities including anti-oxidative, anti-microbial, anti-inflammatory, and anti-cancer effects. However, the direct molecular target of propolis and its therapeutic potential against skin aging in humans is not fully understood. Herein, we investigated the effect of propolis on ultraviolet (UV)-mediated skin aging and its underlying molecular mechanism. Propolis suppressed UV-induced matrix metalloproteinase (MMP)-1 production in human dermal fibroblasts. More importantly, propolis treatment reduced UV-induced MMP-1 expression and blocked collagen degradation in human skin tissues, suggesting that the anti-skin-aging activity of propolis can be recapitulated in clinically relevant conditions. While propolis treatment did not display any noticeable effects against extracellular signal-regulated kinase (ERK), p38, and c-jun N-terminal kinase (JNK) pathways, propolis exerted significant inhibitory activity specifically against phosphorylations of phosphoinositide-dependent protein kinase-1 (PDK1) and protein kinase B (Akt). Kinase assay results demonstrated that propolis can directly suppress phosphoinositide 3-kinase (PI3K) activity, with preferential selectivity towards PI3K with p110α and p110δ catalytic subunits over other kinases. The content of active compounds was quantified, and among the compounds identified from the propolis extract, caffeic acid phenethyl ester, quercetin, and apigenin were shown to attenuate PI3K activity. These results demonstrate that propolis shows anti-skin-aging effects through direct inhibition of PI3K activity.


Subject(s)
MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/pharmacology , Propolis/pharmacology , Skin Aging/drug effects , Apigenin/pharmacology , Caffeic Acids/pharmacology , Collagen/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblasts/drug effects , Humans , Matrix Metalloproteinase 1 , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/pharmacology , Quercetin/pharmacology , Skin/metabolism , Ultraviolet Rays/adverse effects
9.
Phytomedicine ; 79: 153334, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32920288

ABSTRACT

BACKGROUND: Although garcinone C, a natural xanthone derivative identified in the pericarp of Garcinia mangostana, has been demonstrated to exert different health beneficial activities in oxidative stress and ß-amyloid aggregation, the role of garcinone C in colon tumorigenesis has not been investigated. In addition, aberrant Hedgehog (Hh) signaling activation is associated with tumorigenesis including colon cancer. Here, we hypothesized that garcinone C can prevent colon tumorigenesis through regulating the Hh signaling pathway. METHOD: Colony formation assay and flow cytometry were used to evaluate the effect of garcinone C on the proliferation and cell cycle progression of colon cancer cells. Protein expression of cell cycle related markers and Hh/Gli1 signaling mediators were determined. The regulatory effect of orally administered garcinone C on the Hh/Gli1 signaling pathway and colon tumorigenesis was evaluated in an azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colon cancer animal model. RESULTS: Garcinone C suppressed the proliferation of colon cancer cells, induced G0/G1 cell cycle arrest, as well as regulated the expression of cell cycle-related markers such as cyclin D1, cyclin E, CDK6, and p21. Garcinone C inhibited the expression of Gli1, a key mediator of Hedgehog signaling, and protein kinase B (AKT) phosphorylation in Smo-independent colon cancer cells. In the AOM/DSS-induced colon tumorigenesis model, garcinone C significantly inhibited tumor development, regulated the expression of cell cycle markers and Gli1, and reduced AKT phosphorylation in colon tumor tissues, which is consistent with our in vitro results. CONCLUSION: Garcinone C can suppress colon tumorigenesis in vitro and in vivo through Gli1-dependent non-canonical Hedgehog signaling, suggesting that it may serve as a potent chemopreventive agent against colon tumorigenesis.


Subject(s)
Colonic Neoplasms/drug therapy , Hedgehog Proteins/metabolism , Xanthones/pharmacology , Zinc Finger Protein GLI1/metabolism , Animals , Anticarcinogenic Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/metabolism , Cyclin D1/metabolism , Cyclin E/metabolism , Hedgehog Proteins/antagonists & inhibitors , Humans , Male , Mice, Inbred C57BL , Oncogene Proteins/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Zinc Finger Protein GLI1/genetics
10.
Elife ; 92020 04 09.
Article in English | MEDLINE | ID: mdl-32271147

ABSTRACT

Phosphate overload contributes to mineral bone disorders that are associated with crystal nephropathies. Phytate, the major form of phosphorus in plant seeds, is known as an indigestible and of negligible nutritional value in humans. However, the mechanism and adverse effects of high-phytate intake on Ca2+ and phosphate absorption and homeostasis are unknown. Here, we show that excessive intake of phytate along with a low-Ca2+ diet fed to rats contributed to the development of crystal nephropathies, renal phosphate wasting, and bone loss through tubular dysfunction secondary to dysregulation of intestinal calcium and phosphate absorption. Moreover, Ca2+ supplementation alleviated the detrimental effects of excess dietary phytate on bone and kidney through excretion of undigested Ca2+-phytate, which prevented a vicious cycle of intestinal phosphate overload and renal phosphate wasting while improving intestinal Ca2+ bioavailability. Thus, we demonstrate that phytate is digestible without a high-Ca2+ diet and is a risk factor for phosphate overloading and for the development of crystal nephropathies and bone disease.


Subject(s)
Bone and Bones/metabolism , Calcium, Dietary/adverse effects , Calcium/metabolism , Minerals/metabolism , Animal Feed/analysis , Animals , Diet/adverse effects , Female , Male , Phosphates , Phosphorus/metabolism , Phytic Acid/pharmacology , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/metabolism , Risk Factors
11.
Biopreserv Biobank ; 18(3): 213-221, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32216643

ABSTRACT

Cryopreservation of spermatogonial stem cells (SSCs) is essential for preservation of valuable livestock and clinical applications. Although optimal equilibration of cryoprotectants has emerged as a promising approach to improve the cryopreservation efficiency, standard equilibration protocols have not yet been considered in cryopreservation of SSCs. This study aimed to establish a standard equilibration protocol to improve the cryopreservation efficiency of murine germ cells enriched for SSCs. After time- and temperature-dependent equilibration, the germ cells were cryopreserved with 10% dimethyl sulfoxide (DMSO) and 200 mM trehalose. To investigate cryopreservation efficiency at different equilibration conditions, the survival and proliferation rates were assessed after thawing, and then, cytotoxicity and intracellular trehalose quantification were analyzed. Protein (PLZF, GFRα1, VASA, and c-Kit) and gene (Bcl6b, Erm, Dazl, and Sycp1) expression was determined using immunofluorescence and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. The proliferation rate increased significantly following equilibration for 20 minutes at room temperature (RT; 163.7% ± 24.6%) or 4°C (269.0% ± 18.2%). Cytotoxicity was reduced in 10% DMSO with 200 mM trehalose compared with that of 10% DMSO alone. Also, intracellular trehalose was observed after equilibration. The immunofluorescence and RT-qPCR data revealed that the murine germ cells enriched for SSCs retained their self-renewal ability after cryopreservation following equilibration. The most effective protocol was equilibration with 10% DMSO and 200 mM trehalose for 20 minutes at RT or 4°C, which is due to synergistic effects of intracellular and extracellular trehalose. This improved methodology will contribute toward the development of a standardized freezing protocol for murine germ cells enriched for SSCs and thereby expand their application in various fields.


Subject(s)
Biomarkers/analysis , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Semen Preservation/methods , Spermatogonia/cytology , Animals , Cell Culture Techniques , Cell Proliferation/drug effects , Cell Survival/drug effects , Dimethyl Sulfoxide/pharmacology , Male , Mice , Spermatogonia/drug effects , Spermatogonia/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Temperature , Time Factors , Trehalose/pharmacology
12.
Foods ; 9(2)2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32075115

ABSTRACT

Amylose-lipid complex (ALC) was prepared with corn starch and stearic acid and used as a shortening replacement in white pan bread preparation. ALCs were prepared using various concentrations of stearic acid to corn starch (1%, 3%, 5%, and 7%) under different temperatures (55, 65, and 75 °C) and for different durations of time (30, 60, and 120 min); then, their complexing properties were assessed using iodine reagent and X-ray diffraction. The complexing reaction at 75 °C for 60 min showed the highest complexing index of the tested conditions; the in vitro digestibility of ALC was lower than that of corn starch. White pan bread was prepared with ALCs and their characteristics, including appearance, loaf volume, and starch retrogradation during storage at room temperature for four days, were compared with those of control bread. With increasing ALC replacement concentrations, loaf volume and shape were significantly affected; however, starch retrogradation was significantly retarded and energy value decreased by ALC replacement. Overall, 50% replacement of shortening by ALC appeared to be a reasonable level for retaining the basic characteristics of the bread while retarding the staling process. These results indicate that ALCs may be potentially useful in the bakery industry for preparing low calorie and low-fat products.

13.
Foods ; 8(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717478

ABSTRACT

A comparative characterization of proteins from three edible insects-Tenebrio molitor (mealworm) larvae, Gryllus bimaculatus (cricket), and Bombyx mori (silkworm) pupae-was performed in this study. Proteins were extracted from edible insects and their hydrolysates were prepared through enzymatic hydrolysis with commercial enzymes (Flavourzyme: 12%; Alcalase: 3%). Solubility was significantly higher following enzymatic hydrolysis, while foamability was lower compared to those of the protein control. Angiotensin-converting enzyme was significantly inhibited after enzymatic hydrolysis, especially following Alcalase treatment, with IC50 values of 0.047, 0.066, and 0.065 mg/mL for G. bimaculatus, T. molitor larvae, and B. mori pupae, respectively. Moreover, the Alcalase-treated group of B. mori pupae and the T. molitor larvae group treated with a mixture of enzymes showed the effective inhibition of α-glucosidase activity. The anti-inflammatory activity of the insect hydrolysates was assessed via nitric oxide production from macrophages, and B. mori pupae samples exhibited significant activity regardless of the method of hydrolysis. These results indicate the functional properties of protein and hydrolysates from three species of edible insects, which may be useful in their future exploitation.

14.
Food Funct ; 10(5): 2691-2700, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31026007

ABSTRACT

ß-Thujaplicin, a natural monoterpenoid, has been demonstrated to exert health beneficial activities in chronic diseases. However, it has not been studied in regulating estrogen receptor (ER) negative breast cancer. Here, we investigated the effect of ß-thujaplicin on inhibiting ER-negative basal-like breast cancer and the underlying mechanism of action using an in vitro and in vivo xenograft animal model. ß-Thujaplicin induced G0/G1 phase cell cycle arrest and regulated cell cycle mediators, cyclin D1, cyclin E, and cyclin-dependent kinase 4 (CDK 4), leading to the inhibition of the proliferation of ER-negative basal-like MCF10DCIS.com human breast cancer cells. It also modulated the phosphorylation of protein kinase B (AKT) and glycogen synthase kinase (GSK-3ß) and the protein level of ß-catenin. In an MCF10DCIS.com xenograft animal model, ß-thujaplicin significantly inhibited tumor growth, reduced tumor weight, and regulated the expression of cell cycle proteins, phosphorylation of AKT and GSK-3ß, and protein level of ß-catenin in the tumor tissues. These results demonstrate that ß-thujaplicin can suppress basal-like mammary tumor growth by regulating GSK-3ß/ß-catenin signaling, suggesting that ß-thujaplicin may be a potent chemopreventive agent against the basal-like subtype of breast cancer.


Subject(s)
Breast Neoplasms/drug therapy , Drugs, Chinese Herbal/administration & dosage , Glycogen Synthase Kinase 3 beta/metabolism , Monoterpenes/administration & dosage , Tropolone/analogs & derivatives , beta Catenin/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/physiopathology , Cell Line, Tumor , Cell Proliferation/drug effects , Chamaecyparis/chemistry , Cyclin D1/genetics , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Glycogen Synthase Kinase 3 beta/genetics , Humans , Mice, Inbred BALB C , Phosphorylation/drug effects , Signal Transduction/drug effects , Thuja/chemistry , Tropolone/administration & dosage , beta Catenin/genetics
15.
Foods ; 8(2)2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30717099

ABSTRACT

The metabolomic screening of potential anti-inflammatory compounds in the leaves of Actinidia arguta was performed by using LC-MS/MS. Ethanol extracts were prepared, and the anti-inflammatory effects were investigated based on nitric oxide (NO) synthesis and inducible nitric oxide synthase expression in lipopolysaccharide-induced RAW 264.7 macrophages. The 75% ethanol extract showed the highest inhibitory effect on nitric oxide (NO) production, and it was further separated by in vitro bioassay-guided fractionation using preparative LC with reversed-phase column separation. Through multiple steps of fractionation, sub-fraction 1-3 was finally purified, and caffeic acid derivatives, such as caffeoylthreonic acid and danshensu (salvianic acid A), were successfully identified as key anti-inflammatory compounds by LC-MS/MS and metabolomics analyses. This is the first study identifying anti-inflammatory compounds in A. arguta (Actinidia arguta) leaves through bioassay-guided fractionation and metabolomics screening. Results of this study would be useful for the application of A. arguta leaves as a nutraceutical.

16.
Food Sci Biotechnol ; 27(4): 1119-1127, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30263842

ABSTRACT

We used multilocus sequence typing (MLST) to analyze the diversity of natural isolates of Saccharomyces cerevisiae, the most important microorganism in alcoholic fermentation. Six loci, ADP1, RPN2, GLN4, ACC1, MET4, and NUP116, in S. cerevisiae genome were selected as MLST markers. To investigate genetic diversity within S. cerevisiae, 42 S. cerevisiae isolated from natural sources in Korea as well as six S. cerevisiae obtained from Genbank and four industrial S. cerevisiae were examined using MLST. Twenty-six polymorphic sites were found in the six loci. Among them, ACC1 had the most genetic variation with eight polymorphic sites. MLST differentiated the 52 strains into three clades. Alcohol fermentation results revealed that S. cerevisiae in Clade III produced less alcohol than those in Clades I and II. These results suggested that MLST is a powerful tool to differentiate S. cerevisiae and can potentially be used to select S. cerevisiae suitable for industrial use.

17.
Int J Food Microbiol ; 269: 120-127, 2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29425859

ABSTRACT

Early detection of the zearalenone (ZEA) chemotype of Fusarium species could be a precautionary measure for preventing ZEA contamination in rice. In this study, a multiplex polymerase chain reaction (mPCR) assay for detecting ZEA-producing fungi in rice was established using a set of four primers targeting the ZEA biosynthesis genes PKS3, PKS13, ZEB1, and ZEB2. Two mPCR approaches were used: one that amplified the DNA obtained from Fusarium isolates (conventional method) and another that directly amplified the target DNA from rice samples without time-consuming DNA isolation (direct method). The two mPCR methods showed high sensitivity in detecting ZEA-producing species, with a detection limit of 1.25 pg/µL of genomic DNA and 102 and 103 spores/g of white and brown rice, respectively. Both methods were specific for ZEA-producing species and gave four band patterns. The application of the two mPCR methods to 51 Fusarium isolates and 41 rice samples revealed that 31% (16 of 51) and 24% (10 of 41) of the samples were contaminated with ZEA-producing species, respectively. The mPCR results were further evaluated using high-performance liquid chromatography; in general, the two methods yielded similar results. These findings indicate that both mPCR methods are suitable for the detection of ZEA-producing Fusarium species in white and brown rice; however, the direct method yielded more rapid results.


Subject(s)
Fusarium/genetics , Fusarium/metabolism , Multiplex Polymerase Chain Reaction/methods , Zearalenone/genetics , DNA Primers , Food Contamination/analysis , Food Contamination/prevention & control , Oryza/microbiology , Polyketide Synthases/genetics , Trichothecenes/analysis , Zearalenone/metabolism , Zinc Finger E-box Binding Homeobox 2/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
18.
Nutr Res Pract ; 11(4): 265-274, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28765772

ABSTRACT

BACKGROUND/OBJECTIVES: Nelumbo leaves have been used in traditional medicine to treat bleeding, gastritis, hemorrhoids, and halitosis. However, their mechanisms have not been elucidated. MATERIALS/METHODS: The present study prepared two Nelumbo leaf extracts (NLEs) using water or 50% ethanol. Inflammatory response was induced with LPS treatment, and expression of pro-inflammatory mediators (inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-6 and nitric oxide (NO) and prostaglandin E2 (PGE2) productions were assessed. To determine the anti-inflammatory mechanism of NLEs, we measured nuclear factor-κB (NF-κB) activity. Major metabolites of NLEs were also analyzed and quantified. RESULTS: NLEs effectively reduced the expression and productions of pro-inflammatory mediators such as IL-1ß, IL-6, TNF-α, PGE2, and NO. NLEs also reduced NF-κB activity by inhibiting inhibitor of NF-κB phosphorylation. Both extracts contained catechin and quercetin, bioactive compounds of NLEs. CONCLUSIONS: In this study, we showed that NLEs could be used to inhibit NF-κB-mediated inflammatory responses. In addition, our data support the idea that NLEs can ameliorate disease conditions involving chronic inflammation.

19.
Korean J Food Sci Anim Resour ; 37(6): 840-846, 2017.
Article in English | MEDLINE | ID: mdl-29725205

ABSTRACT

We investigated the physicochemical and sensorial properties of hamburger patties made with three different defatted soybean flour (DSF) preparations which differed in particle size. Coarse (Dv50=259.3±0.6 µm), fine (Dv50=91.5±0.5 µm), and superfine (Dv50=3.7±0.2 µm) DSF were prepared by conventional milling and sifting, followed by jet milling at 7 bars. Hamburger patties containing 5% of each DSF were prepared for a property analysis. The hamburger patties made with 5% superfine DSF showed the lowest cooking loss among the treatment groups (p<0.05). The patties with superfine DSF also retained the texture profile values of the control patties in terms of hardness, gumminess, springiness, and chewiness, while the addition of coarse and fine DSF increased the hardness and chewiness significantly (p<0.05). The sensorial results of quantitative descriptive analysis (QDA) indicate that the patties containing superfine DSF were softer and tenderer than the controls (p<0.05). Although the overall acceptability of the patties made with coarse and fine DSF was poor, the overall acceptability of the superfine DSF patty was the same as that of the control patty. These results suggest that superfine DSF is an excellent food material that can supply dietary fiber, while maintaining the physical characteristics and texture of hamburger patty.

20.
Korean J Food Sci Anim Resour ; 37(6): 955-961, 2017.
Article in English | MEDLINE | ID: mdl-29725219

ABSTRACT

Edible insects are attracting growing interest as a sustainable source of protein for addition to processed meat and dairy products. The current study investigated the optimal method for protein extraction from mealworm larvae (Tenebrio molitor), cricket adults (Gryllus bimaculatus), and silkworm pupae (Bombyx mori), for use in further applications. After defatting with n-hexane for up to 48 h, sonication was applied for 1-20 min and the protein yield was measured. All samples showed a total residual fat percentage below 1.36%, and a 35% to 94% improvement in protein yield (%). In conclusion, defatting with n-hexane combined with sonication improves the protein yield from insect samples.

SELECTION OF CITATIONS
SEARCH DETAIL
...