Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Prenat Diagn ; 44(6-7): 888-898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809178

ABSTRACT

OBJECTIVES: We evaluated fetal cardiovascular physiology and mode of cardiac failure in premature miniature piglets on a pumped artificial placenta (AP) circuit. METHODS: Fetal pigs were cannulated via the umbilical vessels and transitioned to an AP circuit composed of a centrifugal pump and neonatal oxygenator and maintained in a fluid-filled biobag. Echocardiographic studies were conducted to measure ventricular function, umbilical blood flow, and fluid status. In utero scans were used as control data. RESULTS: AP fetuses (n = 13; 102±4d gestational age [term 115d]; 616 ± 139 g [g]; survival 46.4 ± 46.8 h) were tachycardic and hypertensive with initially supraphysiologic circuit flows. Increased myocardial wall thickness was observed. Signs of fetal hydrops were present in all piglets. Global longitudinal strain (GLS) measurements increased in the left ventricle (LV) after transition to the circuit. Right ventricle (RV) and LV strain rate decreased early during AP support compared with in utero measurements but recovered toward the end of the experiment. Fetuses supported for >24 h had similar RV GLS to in utero controls and significantly higher GLS compared to piglets surviving only up to 24 h. CONCLUSIONS: Fetuses on a pump-supported AP circuit experienced an increase in afterload, and redistribution of blood flow between the AP and systemic circulations, associated with elevated end-diastolic filling pressures. This resulted in heart failure and hydrops. These preterm fetuses were unable to tolerate the hemodynamic changes associated with connection to the current AP circuit. To better mimic the physiology of the native placenta and preserve normal fetal cardiovascular physiology, further optimization of the circuit will be required.


Subject(s)
Artificial Organs , Echocardiography , Placenta , Swine, Miniature , Animals , Female , Swine , Pregnancy , Placenta/diagnostic imaging , Placenta/blood supply , Echocardiography/methods , Heart Failure/physiopathology , Heart Failure/diagnostic imaging , Animals, Newborn , Cardiovascular Physiological Phenomena , Hydrops Fetalis/diagnostic imaging , Hydrops Fetalis/physiopathology
2.
J Transl Med ; 22(1): 221, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429788

ABSTRACT

BACKGROUND: Cellular stress associated with static-cold storage (SCS) and warm reperfusion of donor lungs can contribute to ischemia-reperfusion (IR) injury during transplantation. Adding cytoprotective agents to the preservation solution may be conducive to reducing graft deterioration and improving post-transplant outcomes. METHODS: SCS and warm reperfusion were simulated in human lung epithelial cells (BEAS-2B) by exposing cells to low potassium dextran glucose solution at 4 °C for different periods and then switching back to serum-containing culture medium at 37 °C. Transcriptomic analysis was used to explore potential cytoprotective agents. Based on its results, cell viability, caspase activity, cell morphology, mitochondrial function, and inflammatory gene expression were examined under simulated IR conditions with or without thyroid hormones (THs). RESULTS: After 18 h SCS followed by 2 h warm reperfusion, genes related to inflammation and cell death were upregulated, and genes related to protein synthesis and metabolism were downregulated in BEAS-2B cells, which closely mirrored gene profiles found in thyroid glands of mice with congenital hypothyroidism. The addition of THs (T3 or T4) to the preservation solution increases cell viability, inhibits activation of caspase 3, 8 and 9, preserves cell morphology, enhances mitochondrial membrane potential, reduces mitochondrial superoxide production, and suppresses inflammatory gene expression. CONCLUSION: Adding THs to lung preservation solutions may protect lung cells during SCS by promoting mitochondrial function, reducing apoptosis, and inhibiting pro-inflammatory pathways. Further in vivo testing is warranted to determine the potential clinical application of adding THs as therapeutics in lung preservation solutions.


Subject(s)
Organ Preservation , Reperfusion Injury , Humans , Mice , Animals , Organ Preservation/methods , Lung/metabolism , Reperfusion , Epithelial Cells/metabolism , Thyroid Hormones/pharmacology , Thyroid Hormones/metabolism
3.
Cells ; 12(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37759518

ABSTRACT

Organ transplantation remains the only treatment option for patients with end-stage organ dysfunction. However, there are numerous limitations that challenge its clinical application, including the shortage of organ donations, the quality of donated organs, injury during organ preservation and reperfusion, primary and chronic graft dysfunction, acute and chronic rejection, infection, and carcinogenesis in post-transplantation patients. Acute and chronic inflammation and cell death are two major underlying mechanisms for graft injury. Necroptosis is a type of programmed cell death involved in many diseases and has been studied in the setting of all major solid organ transplants, including the kidney, heart, liver, and lung. It is determined by the underlying donor organ conditions (e.g., age, alcohol consumption, fatty liver, hemorrhage shock, donation after circulatory death, etc.), preservation conditions and reperfusion, and allograft rejection. The specific molecular mechanisms of necroptosis have been uncovered in the organ transplantation setting, and potential targeting drugs have been identified. We hope this review article will promote more clinical research to determine the role of necroptosis and other types of programmed cell death in solid organ transplantation to alleviate the clinical burden of ischemia-reperfusion injury and graft rejection.

4.
Front Physiol ; 13: 925772, 2022.
Article in English | MEDLINE | ID: mdl-35941934

ABSTRACT

The recent demonstration of normal development of preterm sheep in an artificial extrauterine environment has renewed interest in artificial placenta (AP) systems as a potential treatment strategy for extremely preterm human infants. However, the feasibility of translating this technology to the human preterm infant remains unknown. Here we report the support of 13 preterm fetal pigs delivered at 102 ± 4 days (d) gestation, weighing 616 ± 139 g with a circuit consisting of an oxygenator and a centrifugal pump, comparing these results with our previously reported pumpless circuit (n = 12; 98 ± 4 days; 743 ± 350 g). The umbilical vessels were cannulated, and fetuses were supported for 46.4 ± 46.8 h using the pumped AP versus 11 ± 13 h on the pumpless AP circuit. Upon initiation of AP support on the pumped system, we observed supraphysiologic circuit flows, tachycardia, and hypertension, while animals maintained on a pumpless AP circuit exhibited subphysiologic flows. On the pumped AP circuit, there was a progressive decline in umbilical vein (UV) flow and oxygen delivery. We conclude that the addition of a centrifugal pump to the AP circuit improves survival of preterm pigs by augmenting UV flow through the reduction of right ventricular afterload. However, we continued to observe the development of heart failure within a matter of days.

5.
Physiol Rep ; 9(17): e14999, 2021 09.
Article in English | MEDLINE | ID: mdl-34435462

ABSTRACT

The ductus arteriosus (DA) functionally closes during the transition from fetal to postnatal life because of lung aeration and corresponding cardiovascular changes. The thorough and explicit measurement and visualization of the right and left heart output during this transition has not been previously accomplished. We combined 4D flow MRI (dynamic volumetric blood flow measurements) and T2 relaxometry (oxygen delivery quantification) in surgically instrumented newborn piglets to assess the DA. This was performed in Large White-Landrace-Duroc piglets (n = 34) spanning four age groups: term-9 days, term-3, term+1, and term+5. Subject's DA status was classified using 4D flow: closed DA, forward DA flow, reversed DA flow, and bidirectional DA flow. Over all states, vessel diameters and flows normalized to body weight increased with age (for example in the ascending aorta flow-term-9: 126.6 ± 45.4; term+5: 260.2 ± 80.0 ml/min per kg; p = 0.0005; ascending aorta diameter-term-9: 5.2 ± 0.8; term+5: 7.7 ± 0.4 mm; p = 0.0004). In subjects with reversed DA blood flow there was lower common carotid artery blood flow (forward: 37.5 ± 9.0; reversed: 20.0 ± 7.4 ml/min per kg; p = 0.032). Linear regression revealed that as net DA flow decreases, common carotid artery flow decreases (R2  = 0.32, p = 0.004), and left (R2  = 0.33, p = 0.003) and right (R2  = 0.34, p = 0.003) pulmonary artery flow increases. Bidirectional DA blood flow changed oxygen saturation as determined by MRI between the ascending and descending aorta (ascending aorta: 90.1% ± 8.4%; descending aorta: 75.6% ± 14.2%; p < 0.05). Expanded use of these techniques in preterm animal models will aid in providing new understandings of normal versus abnormal DA transition, as well as to test the effectiveness of related clinical interventions.


Subject(s)
Blood Flow Velocity/physiology , Ductus Arteriosus/diagnostic imaging , Ductus Arteriosus/physiology , Magnetic Resonance Angiography/methods , Magnetic Resonance Imaging/methods , Regional Blood Flow/physiology , Animals , Animals, Newborn , Female , Male , Swine
6.
Physiol Rep ; 9(5): e14742, 2021 03.
Article in English | MEDLINE | ID: mdl-33650787

ABSTRACT

Artificial placenta (AP) technology aims to maintain fetal circulation, while promoting the physiologic development of organs. Recent reports of experiments performed in sheep indicate the intrauterine environment can be recreated through the cannulation of umbilical vessels, replacement of the placenta with a low-resistance membrane oxygenator, and incubation of the fetus in fluid. However, it remains to be seen whether animal fetuses similar in size to the extremely preterm human infant that have been proposed as a potential target for this technology can be supported in this way. Preterm Yucatan miniature piglets are similar in size to extremely preterm human infants and share similar umbilical cord anatomy, raising the possibility to serve as a good model to investigate the AP. To characterize fetal cardiovascular physiology, the carotid artery (n = 24) was cannulated in utero and umbilical vein (UV) and umbilical artery were sampled. Fetal UV flow was measured by MRI (n = 16). Piglets were delivered at 98 ± 4 days gestation (term = 115 days), cannulated, and supported on the AP (n = 12) for 684 ± 228 min (range 195-3077 min). UV flow was subphysiologic (p = .002), while heart rate was elevated on the AP compared with in utero controls (p = .0007). We observed an inverse relationship between heart rate and UV flow (r2  = .4527; p < .001) with progressive right ventricular enlargement that was associated with reduced contractility and ultimately hydrops and circulatory collapse. We attribute this to excessive afterload imposed by supraphysiologic circuit resistance and augmented sympathetic activity. We conclude that short-term support of the preterm piglet on the AP is feasible, although we have not been able to attain normal fetal physiology. In the future, we propose to investigate the feasibility of an AP circuit that incorporates a centrifugal pump in our miniature pig model.


Subject(s)
Fetus/metabolism , Heart Failure/metabolism , Placenta/metabolism , Umbilical Cord/metabolism , Animals , Female , Humans , Models, Animal , Pregnancy , Prenatal Care/methods , Swine
7.
Exp Physiol ; 106(5): 1166-1180, 2021 05.
Article in English | MEDLINE | ID: mdl-33600040

ABSTRACT

NEW FINDINGS: What is the central question of this study? Uterine artery blood flow helps to maintain fetal oxygen and nutrient delivery. We investigated the effects of increased uterine artery blood flow mediated by resveratrol on fetal growth, haemodynamics, blood pressure regulation and oxygenation in pregnant sheep. What is the main finding and its importance? Fetuses from resveratrol-treated ewes were significantly larger and exhibited a haemodynamic profile that might promote peripheral growth. Absolute uterine artery blood flow was positively correlated with umbilical vein oxygen saturation, absolute fetal oxygen delivery and fetal growth. Increasing uterine artery blood flow with compounds such as resveratrol might have clinical significance for pregnancy conditions in which fetal growth and oxygenation are compromised. ABSTRACT: High placental vascular resistance hinders uterine artery (UtA) blood flow and fetal substrate delivery. In the same group of animals as the present study, we have previously shown that resveratrol (RSV) increases UtA blood flow, fetal weight and oxygenation in an ovine model of human pregnancy. However, the mechanisms behind changes in growth and the effects of increases in UtA blood flow on fetal circulatory physiology have yet to be investigated. Twin-bearing ewes received s.c. vehicle (VEH, n = 5) or RSV (n = 6) delivery systems at 113 days of gestation (term = 150 days). Magnetic resonance imaging was performed at 123-124 days to quantify fetal volume, blood flow and oxygen saturation of major fetal vessels. At 128 days, i.v. infusions of sodium nitroprusside and phenylephrine were administered to study the vascular tone of the fetal descending aorta. Maternal RSV increased fetal body volume (P = 0.0075) and weight (P = 0.0358), with no change in brain volume or brain weight. There was a positive relationship between absolute UtA blood flow and umbilical vein oxygen saturation, absolute fetal oxygen delivery and combined fetal twin volume (all P ≤ 0.05). There were no differences between groups in fetal haemodynamics or blood pressure regulation except for higher blood flow to the lower body in RSV fetuses (P = 0.0170). The observed increase in fetal weight might be helpful in pregnancy conditions in which fetal growth and oxygen delivery are compromised. Further preclinical investigations on the mechanism(s) accounting for these changes and the potential to improve growth in complicated pregnancies are warranted.


Subject(s)
Placenta , Uterine Artery , Animals , Blood Pressure , Female , Fetus , Hemodynamics , Pregnancy , Resveratrol/pharmacology , Sheep , Uterine Artery/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...