Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(5)2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33668176

ABSTRACT

Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.


Subject(s)
Bacopa/chemistry , DNA Repair Enzymes/metabolism , Endonucleases/metabolism , Glycosides/pharmacology , Plant Extracts/pharmacology , Saccharomyces cerevisiae Proteins/metabolism , Triterpenes/pharmacology , Vacuoles/drug effects , Cell Proliferation/drug effects , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/genetics , Endonucleases/deficiency , Endonucleases/genetics , Glycosides/chemistry , Plant Extracts/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Triterpenes/chemistry , Vacuoles/metabolism
2.
Toxicon ; 177: 41-45, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32056833

ABSTRACT

Green pit viper (Trimeresurus sp.) bite occurred throughout Myanmar, but there is no specific antivenom produced in the country for related envenomation. Instead, Myanmar Russell's viper antivenom (Anti-MRV) was often misused because of prolonged clotting time was observed from both species. Thai green pit viper antivenom (Anti-TGPV) raised against Trimeresurus albolabris was found to be effective against venoms of more than ten Trimeresurus sp. from Thailand, Malaysia and Indonesia. The present study compared the neutralization capacities of Anti-TGPV and Anti-MRV towards the venom from T. erythrurus from Myanmar. Anti-TGPV was more efficacious than Anti-MRV in cross-neutralizing the lethal and haemorrhagic activities of the venom by a potency of a least 1.4 times higher. Although Anti-TGPV effectively cross-neutralized the coagulation activity of the venom, Anti-MRV failed to do so. Immunodiffusion and immunoblot experiments showed that Anti-TGPV cross-reacted with more protein components of the venom than Anti-MRV. In conclusion, Anti-TGPV is a better choice for patients bitten by Myanmar green pit viper, but further clinical investigation is required. The current findings highlight the development of a specific antivenom against Myanmar green pit viper venom.


Subject(s)
Antivenins/therapeutic use , Crotalid Venoms , Snake Bites/drug therapy , Trimeresurus , Animals , Blood Coagulation Tests , Cross Reactions , Humans , Thailand
3.
J Ethnopharmacol ; 223: 10-21, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29777901

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. AIM OF THE STUDY: To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. RESULTS: Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. CONCLUSIONS: B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF).


Subject(s)
Bacopa , DNA Repair Enzymes/genetics , Endonucleases/genetics , Plant Extracts/pharmacology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/drug effects , Caco-2 Cells , Cell Proliferation/drug effects , Colubrina , Humans , Medicine, Traditional , Plants, Medicinal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...