Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Microb Cell Fact ; 19(1): 216, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33243224

ABSTRACT

BACKGROUND: Gut microbiota in humans and animals play an important role in health, aiding in digestion, regulation of the immune system and protection against pathogens. Changes or imbalances in the gut microbiota (dysbiosis) have been linked to a variety of local and systemic diseases, and there is growing evidence that restoring the balance of the microbiota by delivery of probiotic microorganisms can improve health. However, orally delivered probiotic microorganisms must survive transit through lethal highly acid conditions of the stomach and bile salts in the small intestine. Current methods to protect probiotic microorganisms are still not effective enough. RESULTS: We have developed a cell encapsulation technology based on the natural polymer, cellulose sulphate (CS), that protects members of the microbiota from stomach acid and bile. Here we show that six commonly used probiotic strains (5 bacteria and 1 yeast) can be encapsulated within CS microspheres. These encapsulated strains survive low pH in vitro for at least 4 h without appreciable loss in viability as compared to their respective non-encapsulated counterparts. They also survive subsequent exposure to bile. The CS microspheres can be digested by cellulase at concentrations found in the human intestine, indicating one mechanism of release. Studies in mice that were fed CS encapsulated autofluorescing, commensal E. coli demonstrated release and colonization of the intestinal tract. CONCLUSION: Taken together, the data suggests that CS microencapsulation can protect bacteria and yeasts from viability losses due to stomach acid, allowing the use of lower oral doses of probiotics and microbiota, whilst ensuring good intestinal delivery and release.


Subject(s)
Cell Encapsulation/methods , Cellulose/analogs & derivatives , Drug Compounding/methods , Drug Delivery Systems/methods , Escherichia coli/growth & development , Probiotics/administration & dosage , Animals , Cellulase/chemistry , Cellulose/chemistry , Gastric Juice , Gastrointestinal Microbiome , Humans , Hydrogen-Ion Concentration , Intestines/microbiology , Male , Mice , Mice, Nude , Microbial Viability , Microspheres
2.
J Viral Hepat ; 26(1): 191-198, 2019 01.
Article in English | MEDLINE | ID: mdl-30315669

ABSTRACT

The hepatitis E virus can cause chronic infections in immuno-suppressed patients, and cases have been on the rise globally. Viral mutations during such infections are difficult to characterize. We deep-sequenced viral populations from 15 immunocompromised patients with chronic HEV to identify the viral lineage and describe viral mutational hotspots within and across patients. A total of 21 viral RNA samples were collected between 2012 and 2017 from a single hospital in Singapore. Sequences covering a total of 3894 bp of the HEV genome were obtained. Phylogenetic analyses identified all sequences as belonging to the HEV-3a sub-clade and clearly indicate a unique local lineage. Deep sequencing reveals variable viral population complexity during infections. Comparisons of viral samples from the same patients spaced 2-19 months apart revealed rapid nucleotide replacements in the dominant viral sequence in both ribavirin treated and treatment-naive patients. Mutational hotspots were identified within ORF3 and the PCP/HVR domain of ORF1.


Subject(s)
Hepatitis E virus/genetics , Hepatitis E/virology , Mutation , Phylogeny , RNA, Viral/genetics , Antiviral Agents/therapeutic use , Chronic Disease , Genome, Viral , Genotype , Hepatitis E/blood , Hepatitis E/drug therapy , High-Throughput Nucleotide Sequencing , Humans , Immunocompromised Host , Singapore
SELECTION OF CITATIONS
SEARCH DETAIL