Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Physiol (1985) ; 132(5): 1232-1239, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35389755

ABSTRACT

A venous thromboembolism (VTE) event occurred in a female astronaut during long-duration spaceflight. Multiple factors may have contributed to this risk, including the use of combined (progestin + estrogen) oral contraceptives (cOC). Biochemistry data from 65 astronauts were evaluated for associations with cOC use and with sex. The female astronauts who used cOCs had lower concentrations of serum albumin and higher concentrations of transferrin, a protein involved in the clotting cascade, than the male astronauts and the female astronauts who were not taking cOCs (P < 0.001). The women who used cOCs had higher serum concentrations of the acute phase reactant ceruloplasmin and cortisol during flight (P < 0.001) than the men and the women who were not taking cOCs; they also had higher calculated whole blood viscosity than women not taking cOCs (P < 0.001). Lower circulating concentrations of albumin, higher concentrations of transferrin, and elevated markers of inflammation all could contribute to an increased risk of VTE during spaceflight. These changes, in association with a higher blood viscosity, can directly affect endothelial glycocalyx integrity and hypercoagulability status, both of which contribute to VTE risk in terrestrial populations.NEW & NOTEWORTHY We report here evidence of an association between oral contraceptive use and serum albumin, among other factors, which potentially increase the risk of venous thromboembolism in astronauts. These findings highlight potential risks to astronaut health while providing potential alternative countermeasures for decreasing VTE risk during spaceflight. These findings also highlight an underrecognized potential mechanism for hypoalbuminemia to increase VTE risk in terrestrial populations.


Subject(s)
Venous Thromboembolism , Astronauts , Contraceptives, Oral, Combined/adverse effects , Female , Humans , Male , Risk Factors , Serum Albumin , Transferrins , Venous Thromboembolism/chemically induced
2.
Genes (Basel) ; 12(1)2021 01 16.
Article in English | MEDLINE | ID: mdl-33467183

ABSTRACT

For the past two decades, microbial monitoring of the International Space Station (ISS) has relied on culture-dependent methods that require return to Earth for analysis. This has a number of limitations, with the most significant being bias towards the detection of culturable organisms and the inherent delay between sample collection and ground-based analysis. In recent years, portable and easy-to-use molecular-based tools, such as Oxford Nanopore Technologies' MinION™ sequencer and miniPCR bio's miniPCR™ thermal cycler, have been validated onboard the ISS. Here, we report on the development, validation, and implementation of a swab-to-sequencer method that provides a culture-independent solution to real-time microbial profiling onboard the ISS. Method development focused on analysis of swabs collected in a low-biomass environment with limited facility resources and stringent controls on allowed processes and reagents. ISS-optimized procedures included enzymatic DNA extraction from a swab tip, bead-based purifications, altered buffers, and the use of miniPCR and the MinION. Validation was conducted through extensive ground-based assessments comparing current standard culture-dependent and newly developed culture-independent methods. Similar microbial distributions were observed between the two methods; however, as expected, the culture-independent data revealed microbial profiles with greater diversity. Protocol optimization and verification was established during NASA Extreme Environment Mission Operations (NEEMO) analog missions 21 and 22, respectively. Unique microbial profiles obtained from analog testing validated the swab-to-sequencer method in an extreme environment. Finally, four independent swab-to-sequencer experiments were conducted onboard the ISS by two crewmembers. Microorganisms identified from ISS swabs were consistent with historical culture-based data, and primarily consisted of commonly observed human-associated microbes. This simplified method has been streamlined for high ease-of-use for a non-trained crew to complete in an extreme environment, thereby enabling environmental and human health diagnostics in real-time as future missions take us beyond low-Earth orbit.


Subject(s)
Bacteria/genetics , DNA, Bacterial/genetics , Nanopore Sequencing , Sequence Analysis, DNA , Spacecraft , Specimen Handling , Humans
3.
5.
JAMA Netw Open ; 2(11): e1915011, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31722025

ABSTRACT

Importance: Exposure to a weightless environment during spaceflight results in a chronic headward blood and tissue fluid shift compared with the upright posture on Earth, with unknown consequences to cerebral venous outflow. Objectives: To assess internal jugular vein (IJV) flow and morphology during spaceflight and to investigate if lower body negative pressure is associated with reversing the headward fluid shift experienced during spaceflight. Design, Setting, and Participants: This prospective cohort study included 11 International Space Station crew members participating in long-duration spaceflight missions . Internal jugular vein measurements from before launch and approximately 40 days after landing were acquired in 3 positions: seated, supine, and 15° head-down tilt. In-flight IJV measurements were acquired at approximately 50 days and 150 days into spaceflight during normal spaceflight conditions as well as during use of lower body negative pressure. Data were analyzed in June 2019. Exposures: Posture changes on Earth, spaceflight, and lower body negative pressure. Main Outcomes and Measures: Ultrasonographic assessments of IJV cross-sectional area, pressure, blood flow, and thrombus formation. Results: The 11 healthy crew members included in the study (mean [SD] age, 46.9 [6.3] years, 9 [82%] men) spent a mean (SD) of 210 (76) days in space. Mean IJV area increased from 9.8 (95% CI, -1.2 to 20.7) mm2 in the preflight seated position to 70.3 (95% CI, 59.3-81.2) mm2 during spaceflight (P < .001). Mean IJV pressure increased from the preflight seated position measurement of 5.1 (95% CI, 2.5-7.8) mm Hg to 21.1 (95% CI, 18.5-23.7) mm Hg during spaceflight (P < .001). Furthermore, stagnant or reverse flow in the IJV was observed in 6 crew members (55%) on approximate flight day 50. Notably, 1 crew member was found to have an occlusive IJV thrombus, and a potential partial IJV thrombus was identified in another crew member retrospectively. Lower body negative pressure was associated with improved blood flow in 10 of 17 sessions (59%) during spaceflight. Conclusions and Relevance: This cohort study found stagnant and retrograde blood flow associated with spaceflight in the IJVs of astronauts and IJV thrombosis in at least 1 astronaut, a newly discovered risk associated with spaceflight. Lower body negative pressure may be a promising countermeasure to enhance venous blood flow in the upper body during spaceflight.


Subject(s)
Blood Flow Velocity/physiology , Jugular Veins/physiology , Thrombosis/diagnostic imaging , Weightlessness/adverse effects , Adult , Aerospace Medicine/methods , Astronauts/statistics & numerical data , Cohort Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Retrospective Studies , Space Flight/methods , Space Flight/trends , Thrombosis/prevention & control , Ultrasonography/methods
6.
NPJ Microgravity ; 4: 8, 2018.
Article in English | MEDLINE | ID: mdl-29644336

ABSTRACT

Despite years of research, understanding of the space radiation environment and the risk it poses to long-duration astronauts remains limited. There is a disparity between research results and observed empirical effects seen in human astronaut crews, likely due to the numerous factors that limit terrestrial simulation of the complex space environment and extrapolation of human clinical consequences from varied animal models. Given the intended future of human spaceflight, with efforts now to rapidly expand capabilities for human missions to the moon and Mars, there is a pressing need to improve upon the understanding of the space radiation risk, predict likely clinical outcomes of interplanetary radiation exposure, and develop appropriate and effective mitigation strategies for future missions. To achieve this goal, the space radiation and aerospace community must recognize the historical limitations of radiation research and how such limitations could be addressed in future research endeavors. We have sought to highlight the numerous factors that limit understanding of the risk of space radiation for human crews and to identify ways in which these limitations could be addressed for improved understanding and appropriate risk posture regarding future human spaceflight.

7.
Aerosp Med Hum Perform ; 89(1): 3-8, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29233237

ABSTRACT

INTRODUCTION: Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. METHODS: In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. RESULTS: Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. DISCUSSION: It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.


Subject(s)
Aerospace Medicine , Cosmic Radiation , Models, Theoretical , Radiation Exposure , Space Flight , Spacecraft , Altitude , Humans , Orbit , Radiation Protection
SELECTION OF CITATIONS
SEARCH DETAIL
...