Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Health ; 22(1): 42, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37183246

ABSTRACT

BACKGROUND: The objective of this study was to evaluate the behavioral determinants associated with exclusive use of arsenic-safe water in the community-led Strong Heart Water Study (SHWS) arsenic mitigation program. METHODS: The SHWS is a randomized controlled trial of a community-led arsenic mitigation program designed to reduce arsenic exposure among private well users in American Indian Great Plains communities. All households received point-of-use (POU) arsenic filters installed at baseline and were followed for 2 years. Behavioral determinants selected were those targeted during the development of the SHWS program, and were assessed at baseline and follow-up. RESULTS: Among participants, exclusive use of arsenic-safe water for drinking and cooking at follow-up was associated with higher self-efficacy for accessing local resources to learn about arsenic (OR: 5.19, 95% CI: 1.48-18.21) and higher self-efficacy to resolve challenges related to arsenic in water using local resources (OR: 3.11, 95% CI: 1.11-8.71). Higher commitment to use the POU arsenic filter faucet at baseline was also a significant predictor of exclusive arsenic-safe water use for drinking (OR: 32.57, 95% CI: 1.42-746.70) and cooking (OR: 15.90, 95% CI: 1.33-189.52) at follow-up. From baseline to follow-up, the SHWS program significantly increased perceived vulnerability to arsenic exposure, self-efficacy, descriptive norms, and injunctive norms. Changing one's arsenic filter cartridge after installation was associated with higher self-efficacy to obtain arsenic-safe water for drinking (OR: 6.22, 95% CI: 1.33-29.07) and cooking (OR: 10.65, 95% CI: 2.48-45.68) and higher perceived vulnerability of personal health effects (OR: 7.79, 95% CI: 1.17-51.98) from drinking arsenic-unsafe water. CONCLUSIONS: The community-led SHWS program conducted a theory-driven approach for intervention development and evaluation that allowed for behavioral determinants to be identified that were associated with the use of arsenic safe water and changing one's arsenic filter cartridge. These results demonstrate that theory-driven, context-specific formative research can influence behavior change interventions to reduce water arsenic exposure. The SHWS can serve as a model for the design of theory-driven intervention approaches that engage communities to reduce arsenic exposure. TRIAL REGISTRATION: The SHWS is registered with ClinicalTrials.gov (Identifier: NCT03725592).


Subject(s)
Arsenic , Drinking Water , Water Pollutants, Chemical , Humans , Arsenic/analysis , Water Pollutants, Chemical/analysis , Water Supply
2.
Sci Total Environ ; 862: 160217, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36410482

ABSTRACT

Many rural populations, including American Indian communities, that use private wells from groundwater for their source of drinking and cooking water are disproportionately exposed to elevated levels of arsenic. However, programs aimed at reducing arsenic in American Indian communities are limited. The Strong Heart Water Study (SHWS) is a randomized controlled trial aimed at reducing arsenic exposure among private well users in American Indian Northern Great Plains communities. The community-led SHWS program installed point-of-use (POU) arsenic filters in the kitchen sink of households, and health promoters delivered arsenic health communication programs. In this study we evaluated the efficacy of these POU arsenic filters in removing arsenic during the two-year installation period. Participants were randomized into two arms. In the first arm households received a POU arsenic filter, and 3 calls promoting filter use (SHWS mobile health (mHealth) & filter arm). The second arm received the same filter and phone calls, and 3 in-person home visits and 3 Facebook messages (SHWS intensive arm) for program delivery. Temporal variability in water arsenic concentrations from the main kitchen faucet was also evaluated. A total of 283 water samples were collected from 50 households with private wells from groundwater (139 filter and 144 kitchen faucet samples). Ninety-three percent of households followed after baseline had filter faucet water arsenic concentrations below the arsenic maximum contaminant level of 10 µg/L at the final visit during our 2 year study period with no difference between study arms (98 % in the intensive arm vs. 94 % in the mHealth & filter arm). No significant temporal variation in kitchen arsenic concentration was observed over the study period (intraclass correlation coefficient = 0.99). This study demonstrates that POU arsenic filters installed for the community participatory SHWS program were effective in reducing water arsenic concentration in study households in both arms, even with delivery of the POU arsenic filter and mHealth program only. Furthermore, we observed limited temporal variability of water arsenic concentrations from kitchen faucet samples collected over time from private wells in our study setting.


Subject(s)
Arsenic , Drinking Water , Water Pollutants, Chemical , Humans , Arsenic/analysis , Environmental Monitoring , Water , American Indian or Alaska Native , Water Wells , Water Pollutants, Chemical/analysis , Water Supply , Drinking Water/analysis
3.
Environ Pollut ; 287: 117655, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34426377

ABSTRACT

Arsenic and uranium in unregulated private wells affect many rural populations across the US. The distribution of these contaminants in the private wells of most American Indian communities is poorly characterized, and seldom studied together. Here, we evaluate the association between drinking water arsenic and uranium levels in wells (n = 441) from three tribal regions in North Dakota and South Dakota participating in the Strong Heart Water Study. Groundwater contamination was extensive; 29% and 7% of wells exceeded maximum contaminant levels for arsenic and uranium respectively. 81% of wells had both arsenic and uranium concentrations at one-tenth of their human-health benchmark (arsenic, 1 µg/L; uranium 3 µg/L). Well arsenic and uranium concentrations were uncorrelated (rs = 0.06); however, there appeared to be a spatial correlation of wells co-contaminated by arsenic and uranium associated with flow along a geologic contact. These findings indicate the importance of measuring multiple metals in well water, and to understand underlying hydrogeological conditions. The underlying mechanisms for the prevalence of arsenic and uranium across Northern Plains Tribal Lands in the US, and in particular the occurrence of both elevated arsenic and uranium in drinking water wells in this region, demands further study.


Subject(s)
Arsenic , Uranium , Water Pollutants, Chemical , Arsenic/analysis , Environmental Monitoring , Humans , Uranium/analysis , Water , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...