Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Catal ; 14(17): 12865-12874, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39263542

ABSTRACT

The oxidation of Ag crystal surfaces has recently triggered strong controversies around the presence of sulfur impurities that may catalyze reactions, such as the alkene epoxidations, especially the ethylene epoxidation. A fundamental challenge to achieve a clear understanding is the variety of procedures and setups involved as well as the particular history of each sample. Especially, for the often-used X-ray photoemission technique, product detection, or photoemission peak position overlap are problematic. Here we investigate the oxidation of the Ag(111) surface and its vicinal crystal planes simultaneously, using a curved crystal sample and in situ X-ray photoelectron spectroscopy at 1 mbar O2 near-ambient pressure conditions to further investigate surface species. The curved geometry allows a straightforward comparative analysis of the surface oxidation kinetics at different crystal facets, so as to precisely correlate the evolution of different oxygen species, namely nucleophilic and electrophilic oxygen, and the buildup of sulfur as a function of the crystal orientation. We observed that emission from both surface and bulk oxide contributes to the characteristic nucleophilic oxygen core-level peak, which arises during oxygen dosing and rapidly saturates below temperatures of 180 °C. The electrophilic oxygen peak appears later, growing at a slower but constant rate, at the expenses of the surface oxide. Electrophilic oxygen and sulfur core-levels evolve in parallel in all crystal facets, although faster and stronger at vicinal surfaces featuring B-type steps with {111} microfacets. Our study confirms the intimate connection of the electrophilic species with the formation of adsorbed SO4, and points to a higher catalytic activity of B-type stepped silver surfaces for alkene epoxidation or methane to formaldehyde conversion.

2.
Phys Chem Chem Phys ; 26(3): 1770-1776, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38168970

ABSTRACT

Using a reactive molecular beam with high kinetic energy (Ekin), it is possible to speed gas-surface reactions involving high activation barriers (Eact), which would require elevated pressures (P0) if a random gas with a Maxwell-Boltzmann distribution is used. By simply computing the number of molecules that overcome the activation barrier in a random gas at P0 and in a molecular beam at Ekin = Eact, we establish an Ekin-P0 equivalence curve, through which we postulate that molecular beams are ideal tools to investigate gas-surface reactions that involve high activation energies. In particular, we foresee the use of molecular beams to simulate gas surface reactions within the industrial-range (>10 bar) using surface-sensitive ultra-high vacuum (UHV) techniques, such as X-ray photoemission spectroscopy (XPS). To test this idea, we revisit the oxidation of the Cu(111) surface combining O2 molecular beams and XPS experiments. By tuning the kinetic energy of the O2 beam in the range of 0.24-1 eV, we achieve the same sequence of surface oxides obtained in ambient pressure photoemission (AP-XPS) experiments, in which the Cu(111) surface was exposed to a random O2 gas up to 1 mbar. We observe the same surface oxidation kinetics as in the random gas, but with a much lower dose, close to the expected value derived from the equivalence curve.

3.
Angew Chem Int Ed Engl ; 59(47): 20973-20979, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32749736

ABSTRACT

We determine absolute reactivities for dissociation at low coordinated Pt sites. Two curved Pt(111) single-crystal surfaces allow us to probe either straight or highly kinked step edges with molecules impinging at a low impact energy. A model extracts the average reactivity of inner and outer kink atoms, which is compared to the reactivity of straight A- and B-type steps. Local surface coordination numbers do not adequately capture reactivity trends for H2 dissociation. We utilize the increase of reactivity with step density to determine the area over which a step causes increased dissociation. This step-type specific reactive area extends beyond the step edge onto the (111) terrace. It defines the reaction cross-section for H2 dissociation at the step, bypassing assumptions about contributions of individual types of surface atoms. Our results stress the non-local nature of H2 interaction with a surface and provide insight into reactivity differences for nearly identical step sites.

4.
Phys Chem Chem Phys ; 21(28): 15422-15430, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31287471

ABSTRACT

We investigate water desorption from hydrophobic surfaces using two curved Ag single crystals centered at (111) and (001) apices. On these types of crystals the step density gradually increases along the curvature, allowing us to probe large ranges of surface structures in between the (001), (111) and (110) planes. Subtle differences in desorption of submonolayer water coverages point toward structure dependencies in water cluster nucleation. The B-type step on hydrophobic Ag binds water structures more strongly than adjacent (111) planes, leading to preferred desorption from steps. This driving force is smaller for A-type steps on (111) terraces. The A'-type step flanked by (001) terraces shows no indication of preferred desorption from steps. Extrapolation to the (311) surface, not contained within either curved surface, demonstrates that both A- and A'-type steps can be regarded chemically identical for water desorption. The different trends in desorption temperature on the two crystals can thus be attributed to stronger water adsorption at (001) planes than at (111) planes and identical to adsorption at the step. These results show that our approach to studying the structure dependence of water desorption is sensitive to variations in desorption energy smaller than 'chemical accuracy', i.e. 1 kcal mol-1.

5.
Science ; 363(6423): 155-157, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-30630927

ABSTRACT

The classic system that describes weakly activated dissociation in heterogeneous catalysis has been explained by two dynamical models that are fundamentally at odds. Whereas one model for hydrogen dissociation on platinum(111) invokes a preequilibrium and diffusion toward defects, the other is based on direct and local reaction. We resolve this dispute by quantifying site-specific reactivity using a curved platinum single-crystal surface. Reactivity is step-type dependent and varies linearly with step density. Only the model that relies on localized dissociation is consistent with our results. Our approach provides absolute, site-specific reaction cross sections.

SELECTION OF CITATIONS
SEARCH DETAIL