Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712143

ABSTRACT

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments. Here, we report that, compared to controls, neuraminidase 1 (NEU1) activity is drastically reduced in brain tissues of neurological MPS patients and in mouse models of MPS I, II, IIIA, IIIB and IIIC, but not of other neurological lysosomal disorders not presenting with heparan sulphate storage. We further show that accumulated heparan sulphate disrupts the lysosomal multienzyme complex of NEU1 with cathepsin A (CTSA), ß-galactosidase (GLB1) and glucosamine-6-sulfate sulfatase (GALNS) necessary to maintain enzyme activity, and that NEU1 deficiency is linked to partial deficiencies of GLB1 and GALNS in cortical tissues and iPSC-derived cortical neurons of neurological MPS patients. Increased sialylation of N-linked glycans in brain samples of human MPS III patients and MPS IIIC mice implicated insufficient processing of brain N-linked sialylated glycans, except for polysialic acid, which was reduced in the brains of MPS IIIC mice. Correction of NEU1 activity in MPS IIIC mice by lentiviral gene transfer ameliorated previously identified hallmarks of the disease, including memory impairment, behavioural traits, and reduced levels of the excitatory synapse markers VGLUT1 and PSD95. Overexpression of NEU1 also restored levels of VGLUT1-/PSD95-positive puncta in cortical neurons derived from iPSC of an MPS IIIA patient. Together, our data demonstrate that heparan sulphate-induced secondary NEU1 deficiency and aberrant sialylation of glycoproteins implicated in synaptogenesis, memory, and behaviour constitute a novel pathological pathway in neurological MPS spectrum crucially contributing to CNS pathology.

2.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-38004380

ABSTRACT

Bone fracture healing is a complex biological process involving four phases coordinated over time: hematoma formation, granulation tissue formation, bony callus formation, and bone remodelling. Bone fractures represent a significant health problem, particularly among the elderly population and patients with comorbidities. Therapeutic strategies proposed to treat such fractures include the use of autografts, allografts, and tissue engineering strategies. It has been shown that bone morphogenetic protein 2 (BMP-2) has a therapeutic potential to enhance fracture healing. Despite the clinical efficacy of BMP-2 in osteoinduction and bone repair, adverse side effects and complications have been reported. Therefore, in this in vitro study, we propose the use of a disaccharide compound (DP2) to improve the mineralisation process. We first evaluated the effect of DP2 on primary human osteoblasts (HOb), and then investigated the mechanisms involved. Our findings showed that (i) DP2 improved osteoblast differentiation by inducing alkaline phosphatase activity, osteopontin, and osteocalcin expression; (ii) DP2 induced earlier in vitro mineralisation in HOb cells compared to BMP-2 mainly by earlier activation of Runx2; and (iii) DP2 is internalized in HOb cells and activates the protein kinase C signalling pathway. Consequently, DP2 is a potential therapeutical candidate molecule for bone fracture repair.

3.
Nutrients ; 14(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35956390

ABSTRACT

Iron deficiency is a significant comorbidity of heart failure (HF), defined as the inability of the myocardium to provide sufficient blood flow. However, iron deficiency remains insufficiently detected. Iron-deficiency anemia, defined as a decrease in hemoglobin caused by iron deficiency, is a late consequence of iron deficiency, and the symptoms of iron deficiency, which are not specific, are often confused with those of HF or comorbidities. HF patients with iron deficiency are often rehospitalized and present reduced survival. The correction of iron deficiency in HF patients is associated with improved functional capacity, quality of life, and rehospitalization rates. Because of the inflammation associated with chronic HF, which complicates the picture of nutritional deficiency, only the parenteral route can bypass the tissue sequestration of iron and the inhibition of intestinal iron absorption. Given the negative impact of iron deficiency on HF progression, the frequency and financial implications of rehospitalizations due to decompensation episodes, and the efficacy of this supplementation, screening for this frequent comorbidity should be part of routine testing in all HF patients. Indeed, recent European guidelines recommend screening for iron deficiency (serum ferritin and transferrin saturation coefficient) in all patients with suspected HF, regular iron parameters assessment in all patients with HF, and intravenous iron supplementation in symptomatic patients with proven deficiency. We thus aim to summarize all currently available data regarding this common and easily improvable comorbidity.


Subject(s)
Anemia, Iron-Deficiency , Heart Failure , Iron Deficiencies , Anemia, Iron-Deficiency/diagnosis , Anemia, Iron-Deficiency/epidemiology , Anemia, Iron-Deficiency/etiology , Chronic Disease , Comorbidity , Ferric Compounds , Heart Failure/complications , Heart Failure/diagnosis , Heart Failure/epidemiology , Humans , Iron , Maltose , Quality of Life
4.
Ann Biol Clin (Paris) ; 80(2): 109-118, 2022 03 01.
Article in French | MEDLINE | ID: mdl-35766071

ABSTRACT

The functioning of the heart muscle is particularly sensitive to iron deficiency, the easily curable comorbidity most frequently associated with heart failure. Iron-deficient heart failure patients are more often rehospitalized and have reduced survival. Heart muscle function is particularly susceptible to martial deficiency. Recent randomized studies have shown that exogenous iron intake is accompanied by improved functional capacity (walking test), quality of life, and re-hospitalization rate in these patients. The symptoms of iron deficiency are not very specific and often confused with those of heart failure or other comorbidities, which explains why management is often too late. Anemia is only a late consequence of this iron deficiency. Due to the inflammatory state associated with chronic heart failure, only the parenteral route can bypass the macrophage tissue sequestration of iron and inhibit its intestinal absorption. Recent European guidelines recommend screening for iron deficiency (serum ferritin and transferrin saturation coefficient) in all patients with suspected heart failure, routine iron parameters assessment in all patients with heart failure, and intravenous iron supplementation in case of deficiency in symptomatic patients. Given the pejorative nature of iron deficiency on disease progression, the frequency and financial impact of hospitalizations linked to episodes of decompensation, as well as the effectiveness of simple supplementation, screening for this comorbidity, screening for this frequent comorbidity should now be part of routine testing in all heart failure patients.


Subject(s)
Anemia , Heart Failure , Iron Deficiencies , Comorbidity , Humans
5.
Front Cell Dev Biol ; 10: 823450, 2022.
Article in English | MEDLINE | ID: mdl-35356285

ABSTRACT

Background: Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate among patients with diseases such as atherosclerosis and chronic kidney disease. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete a heterogeneous population of extracellular vesicles (EVs). Recent studies have shown involvement of EVs in the inflammation and oxidative stress observed in VC. We aimed to decipher the role and mechanism of action of macrophage-derived EVs in the propagation of inflammation and oxidative stress on VSMCs during VC. Methods: The macrophage murine cell line RAW 264.7 treated with lipopolysaccharide (LPS-EK) was used as a cellular model for inflammatory and oxidative stress. EVs secreted by these macrophages were collected by ultracentrifugation and characterized by transmission electron microscopy, cryo-electron microscopy, nanoparticle tracking analysis, and the analysis of acetylcholinesterase activity, as well as that of CD9 and CD81 protein expression by western blotting. These EVs were added to a murine VSMC cell line (MOVAS-1) under calcifying conditions (4 mM Pi-7 or 14 days) and calcification assessed by the o-cresolphthalein calcium assay. EV protein content was analyzed in a proteomic study and EV cytokine content assessed using an MSD multiplex immunoassay. Results: LPS-EK significantly decreased macrophage EV biogenesis. A 24-h treatment of VSMCs with these EVs induced both inflammatory and oxidative responses. LPS-EK-treated macrophage-derived EVs were enriched for pro-inflammatory cytokines and CAD, PAI-1, and Saa3 proteins, three molecules involved in inflammation, oxidative stress, and VC. Under calcifying conditions, these EVs significantly increase the calcification of VSMCs by increasing osteogenic markers and decreasing contractile marker expression. Conclusion: Our results show that EVs derived from LPS-EK-treated-macrophages are able to induce pro-inflammatory and pro-oxidative responses in surrounding cells, such as VSMCs, thus aggravating the VC process.

6.
Metabolites ; 12(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35208164

ABSTRACT

Iron absorption requires an acidic environment that is generated by the activity of the proton pump gastric H(+)/K(+)ATPase (ATP4), expressed in gastric parietal cells. However, hepcidin, the iron regulatory peptide that inhibits iron absorption, unexpectedly upregulates ATP4 and increases gastric acidity. Thus, a concept of link between acidosis and alterations in iron metabolism, needs to be explored. We investigated this aspect in-vivo using experimental models of NH4Cl-induced acidosis and of an iron-rich diet. Under acidosis, gastric ATP4 was augmented. Serum hepcidin was induced and its mRNA level was increased in the liver but not in the stomach, a tissue where hepcidin is also expressed. mRNA and protein levels of intestinal DMT1(Divalent Metal Transporter 1) and ferroportin were downregulated. Serum iron level and transferrin saturation remained unchanged, but serum ferritin was significantly increased. Under iron-rich diet, the protein expression of ATP4A was increased and serum, hepatic and gastric hepcidin were all induced. Taken together, these results provide evidence of in-vivo relationship between iron metabolism and acidosis. For clinical importance, we speculate that metabolic acidosis may contribute in part to the pathologic elevation of serum hepcidin levels seen in patients with chronic kidney disease. The regulation of ATP4 by iron metabolism may also be of interest for patients with hemochromatosis.

7.
Front Cell Dev Biol ; 9: 689122, 2021.
Article in English | MEDLINE | ID: mdl-34568315

ABSTRACT

Extracellular vesicles (EVs) have increasingly been recognized as key players in a wide variety of physiological and pathological contexts, including during pregnancy. Notably, EVs appear both as possible biomarkers and as mediators involved in the communication of the placenta with the maternal and fetal sides. A better understanding of the physiological and pathological roles of EVs strongly depends on the development of adequate and reliable study models, specifically at the beginning of pregnancy where many adverse pregnancy outcomes have their origin. In this study, we describe the isolation of small EVs from a histoculture model of first trimester placental explants in normal conditions as well as upon infection by human cytomegalovirus. Using bead-based multiplex cytometry and electron microscopy combined with biochemical approaches, we characterized these small EVs and defined their associated markers and ultrastructure. We observed that infection led to changes in the expression level of several surface markers, without affecting the secretion and integrity of small EVs. Our findings lay the foundation for studying the functional role of EVs during early pregnancy, along with the identification of new predictive biomarkers for the severity and outcome of this congenital infection, which are still sorely lacking.

8.
Hum Gene Ther ; 32(19-20): 1251-1259, 2021 10.
Article in English | MEDLINE | ID: mdl-34405688

ABSTRACT

We report the safety (primary endpoint) and efficacy (secondary endpoint) of a novel intracerebral gene therapy at 5.5 years of follow-up in children with Sanfilippo B. An uncontrolled, phase 1/2 clinical trial was performed in four patients aged 20, 26, 30, and 53 months. Treatment consisted of 16 intracerebral and cerebellar deposits of a recombinant adeno-associated viral vector encoding human α-N-acetylglucosaminidase (rAAV2/5-hNAGLU) plus immunosuppression. An intermediate report at 30 months was previously published. Thirty treatment-emergent adverse events were reported between 30 and 66 months after surgery, including three classified as severe with no serious drug reactions. At 5.5 years, NAGLU activity was persistently detected in the lumbar cerebrospinal fluid (18% of unaffected control level). Circulating T cells reacting against NAGLU peptides were present, indicating a lack of acquired tolerance. Patients 2, 3, and 4 showed progressive brain atrophy and neurocognitive evolution that did not differ from untreated Sanfilippo A/B children. Patient 1, enrolled at 20 months of age, had a milder disease with normal brain imaging and a significantly better cognitive outcome than the three other patients and untreated patients, although not equivalent to normal children. After 5.5 years, the primary endpoint of this study was achieved with a good safety profile of the proposed treatment. We have also observed sustained enzyme production in the brain and absence of immunological tolerance. Cognitive benefit was not confirmed in the three oldest patients. Milder disease in the youngest patient supports further investigations of adeno-associated vector-mediated intracerebral gene therapy in Sanfilippo B.


Subject(s)
Mucopolysaccharidosis III , Brain/diagnostic imaging , Child, Preschool , Follow-Up Studies , Genetic Therapy , Humans , Infant , Infant, Newborn , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/therapy , T-Lymphocytes
10.
Front Neurol ; 12: 640547, 2021.
Article in English | MEDLINE | ID: mdl-34054689

ABSTRACT

Mucopolysaccharidosis type I (MPS I) is caused by a deficiency of the lysosomal hydroxylase alpha-l-iduronidase (IDUA). The resulting accumulation of dermatan and heparan sulfate induces intellectual disabilities and pre-mature death, and only a few treatment options are available. In a previous study, we demonstrated the feasibility, safety, and efficacy of gene therapy by injecting recombinant adeno-associated viral vector serotype (AAV)2/5-IDUA into the brain of a canine model of MPS I. We report on a quantitative proteomic analysis of control dogs and untreated dogs with MPS I cerebrospinal fluid (CSF) that had been collected throughout the study in the MPS I dogs. Mass spectrometry (MS) analysis identified numerous proteins present at altered levels in MPS I CSF samples. Quantitative immunoblotting, performed on CSF from healthy controls, untreated MPS I dogs, and MPS I dogs early treated and late treated by gene therapy, confirmed the MS data for a subset of proteins with higher abundance (neuronal pentraxin 1, chitinase 3-like 1, monocyte differentiation antigen CD14, and insulin-like growth factor-binding protein 2). Scoring of the results shows that the expression levels of these proteins are close to those of the control group for dogs that underwent gene therapy early in life but not for older treated animals. Our results disclose four novel predictive biomarker candidates that might be valuable in monitoring the course of the neurological disease in MPS patients at diagnosis, during clinical follow-up, and after treatment.

11.
Front Immunol ; 12: 655478, 2021.
Article in English | MEDLINE | ID: mdl-34040605

ABSTRACT

Mucopolysaccharidosis type IIIB syndrome (Sanfilippo disease) is a rare autosomic recessif disorder caused by mutations in the α-N-acetylglucosaminidase (NAGLU) gene coding for a lysosomal enzyme, leading to neurodegeneration and progressive deterioration of cognitive abilities in affected children. To supply the missing enzyme, several recent human gene therapy trials relied on the deposit of adeno-associated virus (AAV) vectors directly into the brain. We reported safety and efficacy of an intracerebral therapy in a phase 1/2 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03300453), with a recombinant AAV serotype 2/5 (rAAV2/5) coding human NAGLU in four children with MPS IIIB syndrome receiving immunosuppression. It was reported that AAV-mediated gene therapies might elicit a strong host immune response resulting in decreased transgene expression. To address this issue, we performed a comprehensive analysis of cellular immunity and cytokine patterns generated against the therapeutic enzyme in the four treated children over 5.5 years of follow-up. We report the emergence of memory and polyfunctional CD4+ and CD8+ T lymphocytes sensitized to the transgene soon after the start of therapy, and appearing in peripheral blood in waves throughout the follow-up. However, this response had no apparent impact on CNS transgene expression, which remained stable 66 months after surgery, possibly a consequence of the long-term immunosuppressive treatment. We also report that gene therapy did not trigger neuroinflammation, evaluated through the expression of cytokines and chemokines in patients' CSF. Milder disease progression in the youngest patient was found associated with low level and less differentiated circulating NAGLU-specific T cells, together with the lack of proinflammatory cytokines in the CSF. Findings in this study support a systematic and comprehensive immunomonitoring approach for understanding the impact immune reactions might have on treatment safety and efficacy of gene therapies.


Subject(s)
Acetylglucosaminidase/immunology , Genetic Therapy/adverse effects , Genetic Vectors/adverse effects , Immunity, Cellular , Mucopolysaccharidosis III/complications , Transgenes/immunology , Acetylglucosaminidase/genetics , Child , Cytokines/metabolism , Drug Administration Routes , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/genetics , Humans , Immunologic Memory , Lymphocyte Activation , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/therapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transgenes/genetics
12.
Med Sci (Paris) ; 37(5): 507-518, 2021 May.
Article in French | MEDLINE | ID: mdl-34003097

ABSTRACT

Inborn Errors of Metabolism (IEM) are rare and heterogenous disorders. For most IEMs, clinical signs are non-specific or belated. Late diagnosis is frequent, leading to death or severe sequelae. Some IEM induce intermediate metabolites circulating in the blood. They may be detected by tandem mass spectrometry. This method allows the simultaneous detection of many IEM in different metabolic pathways. In France, newborn screening (NBS) program for IEM, limited to phenylketonuria for decades, has been recently extended to medium chain acyl-CoA dehydrogenase deficiency. Rationale, methodology and organization of this new NBS program are described. Seven other IEM (maple syrup urine disease, homocystinuria, tyrosinemia type I, glutaric aciduria type I, isovaleric acidemia, long chain hydroxy-acyl-CoA dehydrogenase deficiency, carnitine uptake disorder) should be screened in the next program extension. Efforts are needed to fully understand the predictive value of each abnormal testing at birth, decrease the false positive rate, and develop the adequate management strategies.


TITLE: Les nouvelles maladies héréditaires du métabolisme du programme français de dépistage néonatal. ABSTRACT: Les maladies héréditaires du métabolisme (MHM) sont un groupe de maladies rares et cliniquement hétérogènes. Le retard diagnostique est fréquent, conduisant souvent au décès du patient ou à de graves séquelles. Certaines MHM entraînent l'accumulation de métabolites intermédiaires circulant dans le sang, qui sont détectables par une méthode commune utilisant la spectrométrie de masse en tandem. Cette méthode permet la reconnaissance simultanée de plusieurs de ces maladies affectant différentes voies métaboliques. En France, le programme de dépistage néonatal (DNN) des MHM, longtemps limité à la phénylcétonurie, a récemment été étendu au déficit en déshydrogénase des acyl-CoA à chaîne moyenne (MCADD). Le rationnel, la méthode et l'organisation de ce nouveau DNN sont décrits dans cet article. Sept nouvelles MHM (leucinose, homocystinurie, tyrosinémie de type I, acidurie glutarique de type I, acidurie isovalérique, déficit en déshydrogénase des hydroxy-acyl-CoA à chaîne longue, déficit du transporteur de la carnitine) devraient être dépistées, grâce à une prochaine extension du programme de DNN. Des efforts sont nécessaires pour mieux comprendre et prévoir la signification de chaque test anormal à la naissance, diminuer les taux de faux positifs, et développer les stratégies de prise en charge adéquates.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Lipid Metabolism, Inborn Errors , Metabolism, Inborn Errors , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Congenital Bone Marrow Failure Syndromes , Humans , Infant, Newborn , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/epidemiology , Mitochondrial Diseases , Muscular Diseases , Neonatal Screening
13.
Org Biomol Chem ; 19(19): 4346-4351, 2021 05 21.
Article in English | MEDLINE | ID: mdl-33908564

ABSTRACT

Natural sulfated glycans are key players in inflammation through TLR4 activation; therefore synthetic exogenous sulfated saccharides can be used to downregulate inflammation processes. We have designed and synthesized new sulfated compounds based on small and biocompatible carbohydrates that are able to cross the BBB. A suitable protected donor and acceptor, obtained from a unique precursor, have been stereoselectively glycosylated to give an orthogonally protected cellobiose disaccharide. Selective deprotection and sulfation allowed the syntheses of four differentially sulfated disaccharides, which have been characterized by NMR, HRMS and MS/MS. Together with their partially protected precursors, the new compounds were tested on HEK-TLR4 cells. Our results show the potential of small oligosaccharides to modulate TLR4 activity, confirming the need for sulfation and the key role of the 6-sulfate groups to trigger TLR4 signalization.


Subject(s)
Disaccharides
14.
Front Cell Dev Biol ; 8: 589761, 2020.
Article in English | MEDLINE | ID: mdl-33330469

ABSTRACT

OBJECTIVE: Vascular calcification (VC) is an active process during which vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and release extracellular vesicles (EVs). In turn, the EVs serve as calcification foci via interaction with type 1 collagen (COL1). We recently showed that a specific, six-amino-acid repeat (GFOGER) in the sequence of COL1 was involved in the latter's interaction with integrins expressed on EVs. Our main objective was to test the GFOGER ability to inhibit VC. APPROACH: We synthesized the GFOGER peptide and tested its ability to inhibit the inorganic phosphate (Pi)-induced calcification of VSMCs and aortic rings. Using mass spectrometry, we studied GFOGER's effect on the protein composition of EVs released from Pi-treated VSMCs. RESULTS: Calcification of mouse VSMCs (MOVAS-1 cells), primary human VSMCs, and rat aortic rings was lower in the presence of GFOGER than with Pi alone (with relative decreases of 66, 58, and 91%, respectively; p < 0.001 for all) (no effect was observed with the scramble peptide GOERFG). A comparative proteomic analysis of EVs released from MOVAS-1 cells in the presence or absence of Pi highlighted significant differences in EVs' protein content. Interestingly, the expression of some of the EVs' proteins involved in the calcification process (such as osteogenic markers, TANK-binding kinase 1, and casein kinase II) was diminished in the presence of GFOGER peptide (data are available via ProteomeXchange with identifier PXD018169∗). The decrease of osteogenic marker expression observed in the presence of GFOGER was confirmed by q-RT-PCR analysis. CONCLUSION: GFOGER peptide reduces vascular calcification by modifying the protein content of the subsequently released EVs, in particular by decreasing osteogenicswitching in VSMCs.

15.
Toxins (Basel) ; 12(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371311

ABSTRACT

Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate, especially in patients with diabetes, atherosclerosis or chronic kidney disease (CKD). In CKD patients, VC is associated with the accumulation of uremic toxins, such as indoxyl sulphate or inorganic phosphate, which can have a major impact in vascular remodeling. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete extracellular vesicles (EVs) that are heterogeneous in terms of their origin and composition. Under physiological conditions, EVs are involved in cell-cell communication and the maintenance of cellular homeostasis. They contain high levels of calcification inhibitors, such as fetuin-A and matrix Gla protein. Under pathological conditions (and particularly in the presence of uremic toxins), the secreted EVs acquire a pro-calcifying profile and thereby act as nucleating foci for the crystallization of hydroxyapatite and the propagation of calcification. Here, we review the most recent findings on the EVs' pathophysiological role in VC, the impact of uremic toxins on EV biogenesis and functions, the use of EVs as diagnostic biomarkers and the EVs' therapeutic potential in CKD.


Subject(s)
Extracellular Vesicles/metabolism , Renal Insufficiency, Chronic/metabolism , Toxins, Biological/metabolism , Uremia/metabolism , Animals , Biomarkers/metabolism , Extracellular Vesicles/drug effects , Humans , Renal Insufficiency, Chronic/complications , Toxins, Biological/toxicity , Uremia/complications , Vascular Calcification/etiology , Vascular Calcification/metabolism
16.
J Biol Chem ; 295(46): 15767-15781, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32917725

ABSTRACT

Endocannabinoid signaling plays a regulatory role in various (neuro)biological functions. 2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid, and although its canonical biosynthetic pathway involving phosphoinositide-specific phospholipase C and diacylglycerol lipase α is known, alternative pathways remain unsettled. Here, we characterize a noncanonical pathway implicating glycerophosphodiesterase 3 (GDE3, from GDPD2 gene). Human GDE3 expressed in HEK293T cell membranes catalyzed the conversion of lysophosphatidylinositol (LPI) into monoacylglycerol and inositol-1-phosphate. The enzyme was equally active against 1-acyl and 2-acyl LPI. When using 2-acyl LPI, where arachidonic acid is the predominant fatty acid, LC-MS analysis identified 2-AG as the main product of LPI hydrolysis by GDE3. Furthermore, inositol-1-phosphate release into the medium occurred upon addition of LPI to intact cells, suggesting that GDE3 is actually an ecto-lysophospholipase C. In cells expressing G-protein-coupled receptor GPR55, GDE3 abolished 1-acyl LPI-induced signaling. In contrast, upon simultaneous ex-pression of GDE3 and cannabinoid receptor CB2, 2-acyl LPI evoked the same signal as that induced by 2-AG. These data strongly suggest that, in addition to degrading the GPR55 LPI ligand, GDE3 can act as a switch between GPR55 and CB2 signaling. Coincident with a major expression of both GDE3 and CB2 in the spleen, spleens from transgenic mice lacking GDE3 displayed doubling of LPI content compared with WT mice. Decreased production of 2-AG in whole spleen was also observed, supporting the in vivo relevance of our findings. These data thus open a new research avenue in the field of endocannabinoid generation and reinforce the view of GPR55 and LPI being genuine actors of the endocannabinoid system.


Subject(s)
Phosphoric Diester Hydrolases/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Arachidonic Acids/analysis , Arachidonic Acids/metabolism , Arachidonic Acids/pharmacology , Endocannabinoids/analysis , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Female , Glycerides/analysis , Glycerides/metabolism , Glycerides/pharmacology , HEK293 Cells , Humans , Hydrolysis , Inositol Phosphates/metabolism , Lysophospholipids/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monoglycerides/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/deficiency , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Receptors, Cannabinoid/metabolism , Sequence Alignment , Signal Transduction/drug effects , Spleen/metabolism
18.
Mol Ther Methods Clin Dev ; 17: 174-187, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-31909089

ABSTRACT

Patients with mucopolysaccharidosis type IIIA (MPS IIIA) lack the lysosomal enzyme sulfamidase (SGSH), which is responsible for the degradation of heparan sulfate (HS). Build-up of undegraded HS results in severe progressive neurodegeneration for which there is currently no treatment. The ability of the vector adeno-associated virus (AAV)rh.10-CAG-SGSH (LYS-SAF302) to correct disease pathology was evaluated in a mouse model for MPS IIIA. LYS-SAF302 was administered to 5-week-old MPS IIIA mice at three different doses (8.6E+08, 4.1E+10, and 9.0E+10 vector genomes [vg]/animal) injected into the caudate putamen/striatum and thalamus. LYS-SAF302 was able to dose-dependently correct or significantly reduce HS storage, secondary accumulation of GM2 and GM3 gangliosides, ubiquitin-reactive axonal spheroid lesions, lysosomal expansion, and neuroinflammation at 12 weeks and 25 weeks post-dosing. To study SGSH distribution in the brain of large animals, LYS-SAF302 was injected into the subcortical white matter of dogs (1.0E+12 or 2.0E+12 vg/animal) and cynomolgus monkeys (7.2E+11 vg/animal). Increases of SGSH enzyme activity of at least 20% above endogenous levels were detected in 78% (dogs 4 weeks after injection) and 97% (monkeys 6 weeks after injection) of the total brain volume. Taken together, these data validate intraparenchymal AAV administration as a promising method to achieve widespread enzyme distribution and correction of disease pathology in MPS IIIA.

19.
Int J Mol Sci ; 20(2)2019 Jan 21.
Article in English | MEDLINE | ID: mdl-30669586

ABSTRACT

Metabolic phenotyping is poised as a powerful and promising tool for biomarker discovery in inherited metabolic diseases. However, few studies applied this approach to mcopolysaccharidoses (MPS). Thus, this innovative functional approach may unveil comprehensive impairments in MPS biology. This study explores mcopolysaccharidosis VI (MPS VI) or Maroteaux⁻Lamy syndrome (OMIM #253200) which is an autosomal recessive lysosomal storage disease caused by the deficiency of arylsulfatase B enzyme. Urine samples were collected from 16 MPS VI patients and 66 healthy control individuals. Untargeted metabolomics analysis was applied using ultra-high-performance liquid chromatography combined with ion mobility and high-resolution mass spectrometry. Furthermore, dermatan sulfate, amino acids, carnitine, and acylcarnitine profiles were quantified using liquid chromatography coupled to tandem mass spectrometry. Univariate analysis and multivariate data modeling were used for integrative analysis and discriminant metabolites selection. Pathway analysis was done to unveil impaired metabolism. The study revealed significant differential biochemical patterns using multivariate data modeling. Pathway analysis revealed that several major amino acid pathways were dysregulated in MPS VI. Integrative analysis of targeted and untargeted metabolomics data with in silico results yielded arginine-proline, histidine, and glutathione metabolism being the most affected. This study is one of the first metabolic phenotyping studies of MPS VI. The findings might shed light on molecular understanding of MPS pathophysiology to develop further MPS studies to enhance diagnosis and treatments of this rare condition.


Subject(s)
Metabolome , Metabolomics , Mucopolysaccharidosis VI/metabolism , Adolescent , Adult , Aged , Child , Child, Preschool , Computational Biology/methods , Female , Humans , Male , Metabolic Networks and Pathways , Metabolomics/methods , Middle Aged , Molecular Sequence Annotation , Mucopolysaccharidosis VI/genetics , Phenotype , Young Adult
20.
J Transl Med ; 16(1): 248, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30180851

ABSTRACT

BACKGROUND: Metabolomics represent a valuable tool to recover biological information using body fluids and may help to characterize pathophysiological mechanisms of the studied disease. This approach has not been widely used to explore inherited metabolic diseases. This study investigates mucopolysaccharidosis type III (MPS III). A thorough and holistic understanding of metabolic remodeling in MPS III may allow the development, improvement and personalization of patient care. METHODS: We applied both targeted and untargeted metabolomics to urine samples obtained from a French cohort of 49 patients, consisting of 13 MPS IIIA, 16 MPS IIIB, 13 MPS IIIC, and 7 MPS IIID, along with 66 controls. The analytical strategy is based on ultra-high-performance liquid chromatography combined with ion mobility and high-resolution mass spectrometry. Twenty-four amino acids have been assessed using tandem mass spectrometry combined with liquid chromatography. Multivariate data modeling has been used for discriminant metabolite selection. Pathway analysis has been performed to retrieve metabolic pathways impairments. RESULTS: Data analysis revealed distinct biochemical profiles. These metabolic patterns, particularly those related to the amino acid metabolisms, allowed the different studied groups to be distinguished. Pathway analysis unveiled major amino acid pathways impairments in MPS III mainly arginine-proline metabolism and urea cycle metabolism. CONCLUSION: This represents one of the first metabolomics-based investigations of MPS III. These results may shed light on MPS III pathophysiology and could help to set more targeted studies to infer the biomarkers of the affected pathways, which is crucial for rare conditions such as MPS III.


Subject(s)
Amino Acids/urine , Metabolomics/methods , Mucopolysaccharidosis III/metabolism , Mucopolysaccharidosis III/urine , Urinalysis/methods , Adolescent , Adult , Aged , Algorithms , Biomarkers/metabolism , Child , Child, Preschool , Chromatography, Liquid , Cluster Analysis , Female , Gene Expression Regulation , Humans , Infant , Male , Metabolic Networks and Pathways , Middle Aged , Multivariate Analysis , ROC Curve , Tandem Mass Spectrometry , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...