Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 58(32): 3413-3421, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31314511

ABSTRACT

Increased protein solubility is known to correlate with an increase in the proportion of lysine over arginine residues. Previous work has shown that the aggregation propensity of a single-chain variable fragment (scFv) does not correlate with its conformational stability or native-state protein-protein interactions. Here, we test the hypothesis that aggregation is driven by the colloidal stability of partially unfolded states, studying the behavior of scFv mutants harboring single or multiple site-specific arginine to lysine mutations in denaturing buffers. In 6 M guanidine hydrochloride (GdmCl) or 8 M urea, repulsive protein-protein interactions were measured for the wild-type and lysine-enriched (4RK) scFvs reflecting weakened short-range attractions and increased excluded volume. In contrast to the arginine-enriched mutant (7KR) scFv exhibited strong reversible association. In 3 M GdmCl, the minimum concentration at which the scFvs were unfolded, the hydrodynamic radius of 4RK remained constant but increased for the wild type and especially for 7KR. Studies of single-point arginine to lysine scFv mutants indicated that the observed aggregation propensity of arginine under denaturing conditions was nonspecific. Interestingly, one such swap generated a scFv with especially low aggregation rates under low/high ionic strengths and denaturing buffers; molecular modeling identified hydrogen bonding between the arginine side chain and main chain peptide groups, stabilizing the structure. The arginine/lysine ratio is not routinely considered in biopharmaceutical scaffold design or current amyloid prediction methods. This work therefore suggests a simple method for increasing the stability of a biopharmaceutical protein against aggregation.


Subject(s)
Mutation , Protein Aggregates/genetics , Protein Unfolding , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Models, Molecular , Protein Conformation , Protein Stability
2.
Mol Immunol ; 105: 181-189, 2019 01.
Article in English | MEDLINE | ID: mdl-30550980

ABSTRACT

Aggregation of therapeutic proteins is a key factor in the generation of unwanted immunogenicity, and can result in reduced serum half-life, neutralization of function and adverse health effects. There is currently little information regarding how aggregates interact with B-cell receptors or cognate antibodies at the protein sequence level, or whether non-native, aggregate-induced epitopes predominate in these interactions. Using an antibody fragment (single chain antibody variable fragment; scFv) that forms aggregates readily at low temperature, anti-scFv IgG antibody responses were generated by intraperitoneal injection of BALB/c strain mice with monomer or aggregate preparations. Aggregate-specific immunosignatures were identified by oligo-peptide microarray fine epitope mapping, using overlapping 15mer peptides based on the linear sequence of scFv, printed onto glass slides. IgG antibodies from mice immunized with aggregated scFv preferentially recognized a patch of overlapping peptides. This region mapped to a ß-strand located at the interface between the VH and VL domains. Molecular dynamics simulations indicated that the VL domain is less stable than the VH domain, suggesting the interface region between the two domains becomes exposed during partial unfolding of the scFv during aggregate formation. These data are consistent with the hypothesis that epitopes from partially unfolded states are revealed, or are more fully exposed, in the aggregated state, and that this can augment the IgG antibody response. This observation offers the theoretical possibility that epitopes preferentially associated with aggregates can be identified from the anti-drug antibody serum IgG response which may, in turn, lead to better methods for detection of anti-drug antibody responses, and improved design of therapeutic proteins to control immunogenicity.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Immunoglobulin G/immunology , Protein Aggregates/immunology , Protein Unfolding , Single-Chain Antibodies/immunology , Animals , Epitopes, B-Lymphocyte/chemistry , Female , Immunoglobulin G/chemistry , Mice , Mice, Inbred BALB C , Single-Chain Antibodies/chemistry
3.
Eur J Pharm Biopharm ; 115: 18-30, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28161552

ABSTRACT

The aggregation propensities for a series of single-chain variable fragment (scFv) mutant proteins containing supercharged sequences, salt bridges and lysine/arginine-enriched motifs were characterised as a function of pH and ionic strength to isolate the electrostatic contributions. Recent improvements in aggregation predictors rely on using knowledge of native-state protein-protein interactions. Consistent with previous findings, electrostatic contributions to native protein-protein interactions correlate with aggregate growth pathway and rates. However, strong reversible self-association observed for selected mutants under native conditions did not correlate with aggregate growth, indicating 'sticky' surfaces that are exposed in the native monomeric state are inaccessible when aggregates grow. We find that even though similar native-state protein-protein interactions occur for the arginine and lysine-enriched mutants, aggregation propensity is increased for the former and decreased for the latter, providing evidence that lysine suppresses interactions between partially folded states under these conditions. The supercharged mutants follow the behaviour observed for basic proteins under acidic conditions; where excess net charge decreases conformational stability and increases nucleation rates, but conversely reduces aggregate growth rates due to increased intermolecular electrostatic repulsion. The results highlight the limitations of using conformational stability and native-state protein-protein interactions as predictors for aggregation propensity and provide guidance on how to engineer stabilizing charged mutations.


Subject(s)
Mutation/genetics , Protein Aggregates/genetics , Protein Interaction Maps/genetics , Single-Chain Antibodies/genetics , Arginine/genetics , Humans , Hydrogen-Ion Concentration , Lysine/genetics , Models, Molecular , Protein Folding , Static Electricity
4.
Biochim Biophys Acta ; 1863(12): 3116-3124, 2016 12.
Article in English | MEDLINE | ID: mdl-27619192

ABSTRACT

The Tat system transports folded proteins across the bacterial plasma membrane, and in Escherichia coli preferentially transports correctly-folded proteins. Little is known of the mechanism by which Tat proofreads a substrate's conformational state, and in this study we have addressed this question using a heterologous single-chain variable fragment (scFv) with a defined structure. We introduced mutations to surface residues while leaving the folded structure intact, and also tested the importance of conformational flexibility. We show that while the scFv is stably folded and active in the reduced form, formation of the 2 intra-domain disulphide bonds enhances Tat-dependent export 10-fold, indicating Tat senses the conformational flexibility and preferentially exports the more rigid structure. We further show that a 26-residue unstructured tail at the C-terminus blocks export, suggesting that even this short sequence can be sensed by the proofreading system. In contrast, the Tat system can tolerate significant changes in charge or hydrophobicity on the scFv surface; substitution of uncharged residues by up to 3 Lys-Glu pairs has little effect, as has the introduction of up to 5 Lys or Glu residues in a confined domain, or the introduction of a patch of 4 to 6 Leu residues in a hydrophilic region. We propose that the proofreading system has evolved to sense conformational flexibility and detect even very transiently-exposed internal regions, or the presence of unfolded peptide sections. In contrast, it tolerates major changes in surface charge or hydrophobicity.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/chemistry , Single-Chain Antibodies/chemistry , Transgenes , Amino Acid Motifs , Binding Sites , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Models, Molecular , Mutation , Plasmids/chemistry , Plasmids/metabolism , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Protein Sorting Signals , Protein Structure, Secondary , Protein Transport , Single-Chain Antibodies/genetics , Single-Chain Antibodies/metabolism , Static Electricity , Substrate Specificity
5.
3 Biotech ; 6(1): 33, 2016 Jun.
Article in English | MEDLINE | ID: mdl-28330101

ABSTRACT

Large-scale expression of biopharmaceutical proteins in cellular hosts results in production of large insoluble mass aggregates. In order to generate functional product, these aggregates require further processing through refolding with denaturant, a process in itself that can result in aggregation. Using a model folding protein, cytochrome C, we show how an increase in final denaturant concentration decreases the propensity of the protein to aggregate during refolding. Using polarised fluorescence anisotropy, we show how reduced levels of aggregation can be achieved by increasing the period of time the protein remains flexible during refolding, mediated through dilution ratios. This highlights the relationship between the flexibility of a protein and its propensity to aggregate. We attribute this behaviour to the preferential urea-residue interaction, over self-association between molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...