Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Diabetes ; 70(11): 2706-2719, 2021 11.
Article in English | MEDLINE | ID: mdl-34426508

ABSTRACT

There is considerable interest in GIPR agonism to enhance the insulinotropic and extrapancreatic effects of GIP, thereby improving glycemic and weight control in type 2 diabetes (T2D) and obesity. Recent genetic epidemiological evidence has implicated higher GIPR-mediated GIP levels in raising coronary artery disease (CAD) risk, a potential safety concern for GIPR agonism. We therefore aimed to quantitatively assess whether the association between higher GIPR-mediated fasting GIP levels and CAD risk is mediated via GIPR or is instead the result of linkage disequilibrium (LD) confounding between variants at the GIPR locus. Using Bayesian multitrait colocalization, we identified a GIPR missense variant, rs1800437 (G allele; E354), as the putatively causal variant shared among fasting GIP levels, glycemic traits, and adiposity-related traits (posterior probability for colocalization [PPcoloc] > 0.97; PP explained by the candidate variant [PPexplained] = 1) that was independent from a cluster of CAD and lipid traits driven by a known missense variant in APOE (rs7412; distance to E354 ∼770 Kb; R 2 with E354 = 0.004; PPcoloc > 0.99; PPexplained = 1). Further, conditioning the association between E354 and CAD on the residual LD with rs7412, we observed slight attenuation in association, but it remained significant (odds ratio [OR] per copy of E354 after adjustment 1.03; 95% CI 1.02, 1.04; P = 0.003). Instead, E354's association with CAD was completely attenuated when conditioning on an additional established CAD signal, rs1964272 (R 2 with E354 = 0.27), an intronic variant in SNRPD2 (OR for E354 after adjustment for rs1964272: 1.01; 95% CI 0.99, 1.03; P = 0.06). We demonstrate that associations with GIP and anthropometric and glycemic traits are driven by genetic signals distinct from those driving CAD and lipid traits in the GIPR region and that higher E354-mediated fasting GIP levels are not associated with CAD risk. These findings provide evidence that the inclusion of GIPR agonism in dual GIPR/GLP1R agonists could potentiate the protective effect of GLP-1 agonists on diabetes without undue CAD risk, an aspect that has yet to be assessed in clinical trials.


Subject(s)
Cardiovascular Diseases/blood , Diabetes Mellitus, Type 2/blood , Gastric Inhibitory Polypeptide/blood , Genetic Predisposition to Disease , Receptors, Gastrointestinal Hormone/metabolism , Adult , Aged , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Finland , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Receptors, Gastrointestinal Hormone/genetics , Risk Factors , United Kingdom
3.
Nat Genet ; 53(1): 54-64, 2021 01.
Article in English | MEDLINE | ID: mdl-33414548

ABSTRACT

In cross-platform analyses of 174 metabolites, we identify 499 associations (P < 4.9 × 10-10) characterized by pleiotropy, allelic heterogeneity, large and nonlinear effects and enrichment for nonsynonymous variation. We identify a signal at GLP2R (p.Asp470Asn) shared among higher citrulline levels, body mass index, fasting glucose-dependent insulinotropic peptide and type 2 diabetes, with ß-arrestin signaling as the underlying mechanism. Genetically higher serine levels are shown to reduce the likelihood (by 95%) and predict development of macular telangiectasia type 2, a rare degenerative retinal disease. Integration of genomic and small molecule data across platforms enables the discovery of regulators of human metabolism and translation into clinical insights.


Subject(s)
Health , Metabolism/genetics , Diabetes Mellitus, Type 2/genetics , Eye Diseases/genetics , Gene Frequency/genetics , Genetic Loci , Genetic Pleiotropy , Genome, Human , Glucagon-Like Peptide-2 Receptor/genetics , Glycine/metabolism , Humans , Linear Models , Mendelian Randomization Analysis , Metabolism, Inborn Errors/genetics , Metabolome/genetics , Mutation, Missense/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Retinal Telangiectasis/genetics , Sample Size , Serine/metabolism
4.
Nat Commun ; 11(1): 6397, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33328453

ABSTRACT

Understanding the genetic architecture of host proteins interacting with SARS-CoV-2 or mediating the maladaptive host response to COVID-19 can help to identify new or repurpose existing drugs targeting those proteins. We present a genetic discovery study of 179 such host proteins among 10,708 individuals using an aptamer-based technique. We identify 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links and evidence that putative viral interaction partners such as MARK3 affect immune response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).


Subject(s)
COVID-19/genetics , COVID-19/virology , Host-Pathogen Interactions/genetics , Proteins/genetics , SARS-CoV-2/physiology , ABO Blood-Group System/metabolism , Aptamers, Peptide/blood , Aptamers, Peptide/metabolism , Blood Coagulation , Drug Delivery Systems , Female , Gene Expression Regulation , Host-Derived Cellular Factors/metabolism , Humans , Internet , Male , Middle Aged , Quantitative Trait Loci/genetics
5.
Sci Rep ; 10(1): 18879, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144591

ABSTRACT

A nutritional intervention, exclusive enteral nutrition (EEN) can induce remission in patients with pediatric Crohn's disease (CD). We characterized changes in the fecal microbiota and metabolome to identify the mechanism of EEN. Feces of 43 children were collected prior, during and after EEN. Microbiota and metabolites were analyzed by 16S rRNA gene amplicon sequencing and NMR. Selected metabolites were evaluated in relevant model systems. Microbiota and metabolome of patients with CD and controls were different at all time points. Amino acids, primary bile salts, trimethylamine and cadaverine were elevated in patients with CD. Microbiota and metabolome differed between responders and non-responders prior to EEN. EEN decreased microbiota diversity and reduced amino acids, trimethylamine and cadaverine towards control levels. Patients with CD had reduced microbial metabolism of bile acids that partially normalized during EEN. Trimethylamine and cadaverine inhibited intestinal cell growth. TMA and cadaverine inhibited LPS-stimulated TNF-alpha and IL-6 secretion by primary human monocytes. A diet rich in free amino acids worsened inflammation in the DSS model of intestinal inflammation. Trimethylamine, cadaverine, bile salts and amino acids could play a role in the mechanism by which EEN induces remission. Prior to EEN, microbiota and metabolome are different between responders and non-responders.


Subject(s)
Bacteria/classification , Crohn Disease/therapy , Enteral Nutrition/methods , Gastrointestinal Microbiome/drug effects , Metabolomics/methods , Adolescent , Amino Acids/analysis , Bacteria/genetics , Biodiversity , Cadaverine/analysis , Cadaverine/pharmacology , Case-Control Studies , Child , Crohn Disease/immunology , Enteral Nutrition/adverse effects , Feces/microbiology , Female , High-Throughput Nucleotide Sequencing , Humans , Interleukin-6/metabolism , Lipopolysaccharides/adverse effects , Male , Methylamines/analysis , Methylamines/pharmacology , Monocytes/drug effects , Monocytes/immunology , Prospective Studies , RNA, Ribosomal, 16S/genetics , Treatment Outcome
6.
bioRxiv ; 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32637948

ABSTRACT

Strategies to develop therapeutics for SARS-CoV-2 infection may be informed by experimental identification of viral-host protein interactions in cellular assays and measurement of host response proteins in COVID-19 patients. Identification of genetic variants that influence the level or activity of these proteins in the host could enable rapid 'in silico' assessment in human genetic studies of their causal relevance as molecular targets for new or repurposed drugs to treat COVID-19. We integrated large-scale genomic and aptamer-based plasma proteomic data from 10,708 individuals to characterize the genetic architecture of 179 host proteins reported to interact with SARS-CoV-2 proteins or to participate in the host response to COVID-19. We identified 220 host DNA sequence variants acting in cis (MAF 0.01-49.9%) and explaining 0.3-70.9% of the variance of 97 of these proteins, including 45 with no previously known protein quantitative trait loci (pQTL) and 38 encoding current drug targets. Systematic characterization of pQTLs across the phenome identified protein-drug-disease links, evidence that putative viral interaction partners such as MARK3 affect immune response, and establish the first link between a recently reported variant for respiratory failure of COVID-19 patients at the ABO locus and hypercoagulation, i.e. maladaptive host response. Our results accelerate the evaluation and prioritization of new drug development programmes and repurposing of trials to prevent, treat or reduce adverse outcomes. Rapid sharing and dynamic and detailed interrogation of results is facilitated through an interactive webserver ( https://omicscience.org/apps/covidpgwas/ ).

SELECTION OF CITATIONS
SEARCH DETAIL