Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Sci Transl Med ; 15(725): eadg7020, 2023 12 06.
Article in English | MEDLINE | ID: mdl-38055799

ABSTRACT

Low back pain (LBP) is often associated with the degeneration of human intervertebral discs (IVDs). However, the pain-inducing mechanism in degenerating discs remains to be elucidated. Here, we identified a subtype of locally residing human nucleus pulposus cells (NPCs), generated by certain conditions in degenerating discs, that was associated with the onset of discogenic back pain. Single-cell transcriptomic analysis of human tissues showed a strong correlation between a specific cell subtype and the pain condition associated with the human degenerated disc, suggesting that they are pain-triggering. The application of IVD degeneration-associated exogenous stimuli to healthy NPCs in vitro recreated a pain-associated phenotype. These stimulated NPCs activated functional human iPSC-derived sensory neuron responses in an in vitro organ-chip model. Injection of stimulated NPCs into the healthy rat IVD induced local inflammatory responses and increased cold sensitivity and mechanical hypersensitivity. Our findings reveal a previously uncharacterized pain-inducing mechanism mediated by NPCs in degenerating IVDs. These findings could aid in the development of NPC-targeted therapeutic strategies for the clinically unmet need to attenuate discogenic LBP.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Low Back Pain , Nucleus Pulposus , Humans , Rats , Animals , Intervertebral Disc Degeneration/complications , Intervertebral Disc Degeneration/therapy , Low Back Pain/complications , Neuronal Outgrowth
2.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138471

ABSTRACT

Heparin, a highly sulfated glycosaminoglycan, is a naturally occurring anticoagulant that plays a vital role in various physiological processes. The remarkable structural complexity of heparin, consisting of repeating disaccharide units, makes it a crucial molecule for the development of commercial drugs in the pharmaceutical industry. Over the past few decades, significant progress has been made in the development of cost-effective adsorbents specifically designed for the adsorption of heparin from porcine intestinal mucosa. This advancement has been driven by the need for efficient and scalable methods to extract heparin from natural sources. In this study, we investigated the use of cationic ammonium-functionalized diatomaceous earth, featuring enhanced porosity, larger surface area, and higher thermal stability, to maximize the isolated heparin recovery. Our results showed that the higher cationic density and less bulky quaternary modified diatomaceous earth (QDADE) could adsorb up to 16.3 mg·g-1 (31%) of heparin from the real mucosa samples. Additionally, we explored the conditions of the adsorbent surface for recovery of the heparin molecule and optimized various factors, such as temperature and pH, to optimize the heparin uptake. This is the introductory account of the implementation of modified diatomaceous earth with quaternary amines for heparin capture.


Subject(s)
Diatomaceous Earth , Heparin , Animals , Swine , Diatomaceous Earth/chemistry , Anticoagulants , Temperature , Intestinal Mucosa
3.
Trials ; 24(1): 636, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794431

ABSTRACT

BACKGROUND: A large epidemic, such as that observed with SARS-CoV-2, seriously challenges available hospital capacity, and this would be augmented by infection of healthcare workers (HCW). Bacillus Calmette-Guérin (BCG) is a vaccine against tuberculosis, with protective non-specific effects against other respiratory tract infections in vitro and in vivo. Preliminary analyses suggest that regions of the world with existing BCG vaccination programs have lower incidence and mortality from COVID-19. We hypothesize that BCG vaccination can reduce SARS-CoV-2 infection and disease severity. METHODS: This will be a placebo-controlled adaptive multi-center randomized controlled trial. A total of 1800 individuals considered to be at high risk, including those with comorbidities (hypertension, diabetes, obesity, reactive airway disease, smokers), racial and ethnic minorities, elderly, teachers, police, restaurant wait-staff, delivery personnel, health care workers who are defined as personnel working in a healthcare setting, at a hospital, medical center or clinic (veterinary, dental, ophthalmology), and first responders (paramedics, firefighters, or law enforcement), will be randomly assigned to two treatment groups. The treatment groups will receive intradermal administration of BCG vaccine or placebo (saline) with groups at a 1:1 ratio. Individuals will be tracked for evidence of SARS-CoV-2 infection and severity as well as obtaining whole blood to track immunological markers, and a sub-study will include cognitive function and brain imaging. The majority of individuals will be followed for 6 months, with an option to extend for another 6 months, and the cognitive sub-study duration is 2 years. We will plot Kaplan-Meier curves that will be plotted comparing groups and hazard ratios and p-values reported using Cox proportional hazard models. DISCUSSION: It is expected this trial will allow evaluation of the effects of BCG vaccination at a population level in high-risk healthcare individuals through a mitigated clinical course of SARS-CoV-2 infection and inform policy making during the ongoing epidemic. TRIAL REGISTRATION: ClinicalTrials.gov NCT04348370. Registered on April 16, 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Aged , COVID-19/prevention & control , BCG Vaccine , Vaccination , Health Personnel , Immunity
4.
J Transl Med ; 21(1): 650, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37743503

ABSTRACT

BACKGROUND: Stem cell products are increasingly entering early stage clinical trials for treating retinal degeneration. The field is learning from experience about comparability of cells proposed for preclinical and clinical use. Without this, preclinical data supporting translation to a clinical study might not adequately reflect the performance of subsequent clinical-grade cells in patients. METHODS: Research-grade human neural progenitor cells (hNPC) and clinical-grade hNPC (termed CNS10-NPC) were injected into the subretinal space of the Royal College of Surgeons (RCS) rat, a rodent model of retinal degeneration such as retinitis pigmentosa. An investigational new drug (IND)-enabling study with CNS10-NPC was performed in the same rodent model. Finally, surgical methodology for subretinal cell delivery in the clinic was optimized in a large animal model with Yucatan minipigs. RESULTS: Both research-grade hNPC and clinical-grade hNPC can survive and provide functional and morphological protection in a dose-dependent fashion in RCS rats and the optimal cell dose was defined and used in IND-enabling studies. Grafted CNS10-NPC migrated from the injection site without differentiation into retinal cell phenotypes. Additionally, CNS10-NPC showed long-term survival, safety and efficacy in a good laboratory practice (GLP) toxicity and tumorigenicity study, with no observed cell overgrowth even at the maximum deliverable dose. Finally, using a large animal model with the Yucatan minipig, which has an eye size comparable to the human, we optimized the surgical methodology for subretinal cell delivery in the clinic. CONCLUSIONS: These extensive studies supported an approved IND and the translation of CNS10-NPC to an ongoing Phase 1/2a clinical trial (NCT04284293) for the treatment of retinitis pigmentosa.


Subject(s)
Retinal Degeneration , Retinitis Pigmentosa , Humans , Animals , Rats , Swine , Swine, Miniature , Retinal Degeneration/therapy , Neurons , Ambulatory Care Facilities
5.
Stem Cell Reports ; 18(8): 1629-1642, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37084724

ABSTRACT

Human induced pluripotent stem cells (iPSCs) are a renewable cell source that can be differentiated into neural progenitor cells (iNPCs) and transduced with glial cell line-derived neurotrophic factor (iNPC-GDNFs). The goal of the current study is to characterize iNPC-GDNFs and test their therapeutic potential and safety. Single-nuclei RNA-seq show iNPC-GDNFs express NPC markers. iNPC-GDNFs delivered into the subretinal space of the Royal College of Surgeons rodent model of retinal degeneration preserve photoreceptors and visual function. Additionally, iNPC-GDNF transplants in the spinal cord of SOD1G93A amyotrophic lateral sclerosis (ALS) rats preserve motor neurons. Finally, iNPC-GDNF transplants in the spinal cord of athymic nude rats survive and produce GDNF for 9 months, with no signs of tumor formation or continual cell proliferation. iNPC-GDNFs survive long-term, are safe, and provide neuroprotection in models of both retinal degeneration and ALS, indicating their potential as a combined cell and gene therapy for various neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Retinal Degeneration , Humans , Rats , Animals , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/pathology , Rodentia , Retinal Degeneration/therapy , Retinal Degeneration/pathology , Glial Cell Line-Derived Neurotrophic Factor/genetics , Astrocytes/pathology , Disease Models, Animal
6.
Curr Med Imaging ; 19(8): 799-806, 2023.
Article in English | MEDLINE | ID: mdl-36443968

ABSTRACT

Breast cancer accounts for 30% of female cancers and is the second leading cause of cancerrelated deaths in women. The rate is rising at 0.4% per year. Early detection is crucial to improve treatment efficacy and overall survival of women diagnosed with breast cancer. Digital Mammography and Digital Breast Tomosynthesis have widely demonstrated their role as a screening tool. However, screening mammography is limited by radiologist's experience, unnecessarily high recalls, overdiagnosis, overtreatment and, in the case of Digital Breast Tomosynthesis, long reporting time. This is compounded by an increasing shortage of manpower and resources issue, especially among breast imaging specialists. Recent advances in image analysis with the use of artificial intelligence (AI) in breast imaging have the potential to overcome some of these needs and address the clinical challenges in cancer detection, assessment of treatment response, and monitoring disease progression. This article focuses on the most important clinical implication and future application of AI in the field of digital mammography and digital breast tomosynthesis, providing the readers with a comprehensive overview of AI impact in cancer detection, diagnosis, reduction of workload and breast cancer risk stratification.


Subject(s)
Breast Neoplasms , Mammography , Female , Humans , Mammography/methods , Breast Neoplasms/diagnostic imaging , Artificial Intelligence , Early Detection of Cancer/methods , Mass Screening
7.
Sci Rep ; 12(1): 18701, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333414

ABSTRACT

Cranial bone loss presents a major clinical challenge and new regenerative approaches to address craniofacial reconstruction are in great demand. Induced pluripotent stem cell (iPSC) differentiation is a powerful tool to generate mesenchymal stromal cells (MSCs). Prior research demonstrated the potential of bone marrow-derived MSCs (BM-MSCs) and iPSC-derived mesenchymal progenitor cells via the neural crest (NCC-MPCs) or mesodermal lineages (iMSCs) to be promising cell source for bone regeneration. Overexpression of human recombinant bone morphogenetic protein (BMP)6 efficiently stimulates bone formation. The study aimed to evaluate the potential of iPSC-derived cells via neural crest or mesoderm overexpressing BMP6 and embedded in 3D printable bio-ink to generate viable bone graft alternatives for cranial reconstruction. Cell viability, osteogenic potential of cells, and bio-ink (Ink-Bone or GelXa) combinations were investigated in vitro using bioluminescent imaging. The osteogenic potential of bio-ink-cell constructs were evaluated in osteogenic media or nucleofected with BMP6 using qRT-PCR and in vitro µCT. For in vivo testing, two 2 mm circular defects were created in the frontal and parietal bones of NOD/SCID mice and treated with Ink-Bone, Ink-Bone + BM-MSC-BMP6, Ink-Bone + iMSC-BMP6, Ink-Bone + iNCC-MPC-BMP6, or left untreated. For follow-up, µCT was performed at weeks 0, 4, and 8 weeks. At the time of sacrifice (week 8), histological and immunofluorescent analyses were performed. Both bio-inks supported cell survival and promoted osteogenic differentiation of iNCC-MPCs and BM-MSCs in vitro. At 4 weeks, cell viability of both BM-MSCs and iNCC-MPCs were increased in Ink-Bone compared to GelXA. The combination of Ink-Bone with iNCC-MPC-BMP6 resulted in an increased bone volume in the frontal bone compared to the other groups at 4 weeks post-surgery. At 8 weeks, both iNCC-MPC-BMP6 and iMSC-MSC-BMP6 resulted in an increased bone volume and partial bone bridging between the implant and host bone compared to the other groups. The results of this study show the potential of NCC-MPC-incorporated bio-ink to regenerate frontal cranial defects. Therefore, this bio-ink-cell combination should be further investigated for its therapeutic potential in large animal models with larger cranial defects, allowing for 3D printing of the cell-incorporated material.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Mice , Animals , Osteogenesis , Ink , Neural Crest , Mice, Inbred NOD , Mice, SCID , Cell Differentiation
8.
Nat Med ; 28(9): 1813-1822, 2022 09.
Article in English | MEDLINE | ID: mdl-36064599

ABSTRACT

Amyotrophic lateral sclerosis (ALS) involves progressive motor neuron loss, leading to paralysis and death typically within 3-5 years of diagnosis. Dysfunctional astrocytes may contribute to disease and glial cell line-derived neurotrophic factor (GDNF) can be protective. Here we show that human neural progenitor cells transduced with GDNF (CNS10-NPC-GDNF) differentiated to astrocytes protected spinal motor neurons and were safe in animal models. CNS10-NPC-GDNF were transplanted unilaterally into the lumbar spinal cord of 18 ALS participants in a phase 1/2a study (NCT02943850). The primary endpoint of safety at 1 year was met, with no negative effect of the transplant on motor function in the treated leg compared with the untreated leg. Tissue analysis of 13 participants who died of disease progression showed graft survival and GDNF production. Benign neuromas near delivery sites were common incidental findings at post-mortem. This study shows that one administration of engineered neural progenitors can provide new support cells and GDNF delivery to the ALS patient spinal cord for up to 42 months post-transplantation.


Subject(s)
Amyotrophic Lateral Sclerosis , Neural Stem Cells , Amyotrophic Lateral Sclerosis/therapy , Animals , Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Spinal Cord , Superoxide Dismutase
9.
Thyroid ; 32(7): 849-859, 2022 07.
Article in English | MEDLINE | ID: mdl-35350867

ABSTRACT

Background: Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor disability disorder that also manifests characteristic abnormal thyroid hormone (TH) levels. AHDS is caused by inactivating mutations in monocarboxylate transporter 8 (MCT8), a specific TH plasma membrane transporter widely expressed in the central nervous system (CNS). MCT8 mutations cause impaired transport of TH across brain barriers, leading to insufficient neural TH supply. There is currently no successful therapy for the neurological symptoms. Earlier work has shown that intravenous (IV), but not intracerebroventricular adeno-associated virus serotype 9 (AAV9) -based gene therapy given to newborn Mct8 knockout (Mct8-/y) male mice increased triiodothyronine (T3) brain content and partially rescued TH-dependent gene expression, suggesting a promising approach to treat this neurological disorder. Methods: The potential of IV delivery of AAV9 carrying human MCT8 was tested in the well-established Mct8-/y/Organic anion-transporting polypeptide 1c1 (Oatp1c1)-/ - double knockout (dKO) mouse model of AHDS, which, unlike Mct8-/y mice, displays both neurological and TH phenotype. Further, as the condition is usually diagnosed during childhood, treatment was given intravenously to P30 mice and psychomotor tests were carried out blindly at P120-P140 after which tissues were collected and analyzed. Results: Systemic IV delivery of AAV9-MCT8 at a juvenile stage led to improved locomotor and cognitive functions at P120-P140, which was accompanied by a near normalization of T3 content and an increased response of positively regulated TH-dependent gene expression in different brain regions examined (thalamus, hippocampus, and parietal cortex). The effects on serum TH concentrations and peripheral tissues were less pronounced, showing only improvement in the serum T3/reverse T3 (rT3) ratio and in liver deiodinase 1 expression. Conclusion: IV administration of AAV9, carrying the human MCT8, to juvenile dKO mice manifesting AHDS has long-term beneficial effects, predominantly on the CNS. This preclinical study indicates that this gene therapy has the potential to ameliorate the devastating neurological symptoms in patients with AHDS.


Subject(s)
Mental Retardation, X-Linked , Monocarboxylic Acid Transporters , Symporters , Animals , Dependovirus/genetics , Dependovirus/metabolism , Disease Models, Animal , Male , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/therapy , Mice , Monocarboxylic Acid Transporters/administration & dosage , Monocarboxylic Acid Transporters/deficiency , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Hypotonia , Muscular Atrophy , Mutation , Serogroup , Symporters/administration & dosage , Symporters/deficiency , Symporters/genetics , Symporters/metabolism , Triiodothyronine/metabolism
10.
Brain Sci ; 11(2)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530492

ABSTRACT

Traumatic brain injury (TBI) is a well-established risk factor for several neurodegenerative disorders including Alzheimer's disease and Parkinson's disease, however, a link between TBI and amyotrophic lateral sclerosis (ALS) has not been clearly elucidated. Using the SOD1G93A rat model known to recapitulate the human ALS condition, we found that exposure to mild, repetitive TBI lead ALS rats to experience earlier disease onset and shortened survival relative to their sham counterparts. Importantly, increased severity of early injury symptoms prior to the onset of ALS disease symptoms was linked to poor health of corticospinal motor neurons and predicted worsened outcome later in life. Whereas ALS rats with only mild behavioral injury deficits exhibited no observable changes in corticospinal motor neuron health and did not present with early onset or shortened survival, those with more severe injury-related deficits exhibited alterations in corticospinal motor neuron health and presented with significantly earlier onset and shortened lifespan. While these studies do not imply that TBI causes ALS, we provide experimental evidence that head injury is a risk factor for earlier disease onset in a genetically predisposed ALS population and is associated with poor health of corticospinal motor neurons.

11.
Int J Mol Sci ; 21(24)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352698

ABSTRACT

Type 2 diabetes mellitus (T2DM) is associated with advanced glycation end product (AGE) enrichment and considered a risk factor for intervertebral disc (IVD) degeneration. We hypothesized that systemic AGE inhibition, achieved using pyridoxamine (PM), attenuates IVD degeneration in T2DM rats. To induce IVD degeneration, lumbar disc injury or sham surgery was performed on Zucker Diabetic Sprague Dawley (ZDSD) or control Sprague Dawley (SD) rats. Post-surgery, IVD-injured ZDSD rats received daily PM dissolved in drinking water or water only. The resulting groups were SD uninjured, SD injured, ZDSD uninjured, ZDSD injured, and ZDSD injured + PM. Levels of blood glycation and disc degeneration were investigated. At week 8 post-surgery, glycated serum protein (GSP) levels were increased in ZDSDs compared to SDs. PM treatment attenuated this increase. Micro-MRI analysis demonstrated IVD dehydration in injured versus uninjured SDs and ZDSDs. In the ZDSD injured + PM group, IVD dehydration was diminished compared to ZDSD injured. AGE levels were decreased and aggrecan levels increased in ZDSD injured + PM versus ZDSD injured rats. Histological and immunohistochemical analyses further supported the beneficial effect of PM. In summary, PM attenuated GSP levels and IVD degeneration processes in ZDSD rats, demonstrating its potential to attenuate IVD degeneration in addition to managing glycemia in T2DM.


Subject(s)
Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 2/complications , Glycation End Products, Advanced/antagonists & inhibitors , Intervertebral Disc Degeneration/prevention & control , Pyridoxamine/pharmacology , Vitamin B Complex/pharmacology , Animals , Blood Glucose , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Diet, High-Fat/adverse effects , Intervertebral Disc Degeneration/etiology , Intervertebral Disc Degeneration/pathology , Male , Rats , Rats, Sprague-Dawley , Rats, Zucker
12.
Am J Sports Med ; 48(12): 3002-3012, 2020 10.
Article in English | MEDLINE | ID: mdl-32924528

ABSTRACT

BACKGROUND: There is a high incidence of posttraumatic osteoarthritis (PTOA) after anterior cruciate ligament (ACL) injury, and these injuries represent an enormous health care economic burden. In an effort to address this unmet clinical need, there has been increasing interest in cell-based therapies. PURPOSE: To establish a translational large animal model of PTOA and demonstrate the feasibility of intra-articular human cell-based interventions. STUDY DESIGN: Descriptive laboratory study. METHODS: Nine Yucatan mini-pigs underwent unilateral ACL transection and were monitored for up to 12 weeks after injury. Interleukin 1 beta (IL-1ß) levels and collagen breakdown were evaluated longitudinally using enzyme-linked immunosorbent assays of synovial fluid, serum, and urine. Animals were euthanized at 4 weeks (n = 3) or 12 weeks (n = 3) after injury, and injured and uninjured limbs underwent magnetic resonance imaging (MRI) and histologic analysis. At 2 days after ACL injury, an additional 3 animals received an intra-articular injection of 107 human bone marrow-derived mesenchymal stem cells (hBM-MSCs) combined with a fibrin carrier. These cells were labeled with the luciferase reporter gene (hBM-MSCs-Luc) as well as fluorescent markers and intracellular iron nanoparticles. These animals were euthanized on day 0 (n = 1) or day 14 (n = 2) after injection. hBM-MSC-Luc viability and localization were assessed using ex vivo bioluminescence imaging, fluorescence imaging, and MRI. RESULTS: PTOA was detected as early as 4 weeks after injury. At 12 weeks after injury, osteoarthritis could be detected grossly as well as on histologic analysis. Synovial fluid analysis showed elevation of IL-1ß shortly after ACL injury, with subsequent resolution by 2 weeks after injury. Collagen type II protein fragments were elevated in the synovial fluid and serum after injury. hBM-MSCs-Luc were detected immediately after injection and at 2 weeks after injection using fluorescence imaging, MRI, and bioluminescence imaging. CONCLUSION: This study demonstrates the feasibility of reproducing the chondral changes, intra-articular cytokine alterations, and body fluid biomarker findings consistent with PTOA after ACL injury in a large animal model. Furthermore, we have demonstrated the ability of hBM-MSCs to survive and express transgene within the knee joint of porcine hosts without immunosuppression for at least 2 weeks. CLINICAL RELEVANCE: This model holds great potential to significantly contribute to investigations focused on the development of cell-based therapies for human ACL injury-associated PTOA in the future (see Appendix Figure A1, available online).


Subject(s)
Anterior Cruciate Ligament Injuries/complications , Cartilage, Articular , Mesenchymal Stem Cell Transplantation , Osteoarthritis/therapy , Animals , Anterior Cruciate Ligament Injuries/therapy , Biomarkers/analysis , Cartilage, Articular/diagnostic imaging , Cytokines/analysis , Disease Models, Animal , Humans , Knee Joint/physiopathology , Knee Joint/surgery , Osteoarthritis/etiology , Swine , Swine, Miniature , Synovial Fluid
13.
J Tissue Eng Regen Med ; 14(8): 1037-1049, 2020 08.
Article in English | MEDLINE | ID: mdl-32483878

ABSTRACT

Massive craniofacial bone loss poses a clinical challenge to maxillofacial surgeons. Structural bone allografts are readily available at tissue banks but are rarely used due to a high failure rate. Previous studies showed that intermittent administration of recombinant parathyroid hormone (rPTH) enhanced integration of allografts in a murine model of calvarial bone defect. To evaluate its translational potential, the hypothesis that rPTH would enhance healing of a mandibular allograft in a clinically relevant large animal model of mandibulectomy was tested. Porcine bone allografts were implanted into a 5-cm-long continuous mandible bone defect in six adult Yucatan minipigs, which were randomized to daily intramuscular injections of rPTH (1.75 µg/kg) and placebo (n = 3). Blood tests were performed on Day 56 preoperation, Day 0 and on Day 56 postoperation. Eight weeks after the surgery, bone healing was analyzed using high-resolution X-ray imaging (Faxitron and micro computed tomography [CT]) and three-point bending biomechanical testing. The results showed a significant 2.6-fold rPTH-induced increase in bone formation (p = 0.02). Biomechanically, the yield failure properties of the healed mandibles were significantly higher in the rPTH group (yield load: p < 0.05; energy to yield: p < 0.01), and the post-yield displacement and energy were higher in the placebo group (p < 0.05), suggesting increased mineralized integration of the allograft in the rPTH group. In contrast to similar rPTH therapy studies in dogs, no signs of hypercalcemia, hyperphosphatemia, or inflammation were detected. Taken together, we provide initial evidence that rPTH treatment enhances mandibular allograft healing in a clinically relevant large animal model.


Subject(s)
Bone Transplantation , Mandible/transplantation , Mandibular Injuries/therapy , Mandibular Osteotomy , Osteogenesis/drug effects , Teriparatide/pharmacology , Allografts , Animals , Female , Swine , Swine, Miniature
14.
Theranostics ; 9(25): 7506-7524, 2019.
Article in English | MEDLINE | ID: mdl-31695783

ABSTRACT

Introduction: As many as 80% of the adult population experience back pain at some point in their lifetimes. Previous studies have indicated a link between back pain and intervertebral disc (IVD) degeneration. Despite decades of research, there is an urgent need for robust stem cell therapy targeting underlying causes rather than symptoms. It has been proposed that notochordal cells (NCs) appear to be the ideal cell type to regenerate the IVD: these cells disappear in humans as they mature, are replaced by nucleus pulposus (NP) cells, and their disappearance correlates with the initiation of degeneration of the disc. Human NCs are in short supply, thus here aimed for generation of notochordal-like cells from induced pluripotent cells (iPSCs). Methods: Human iPSCs were generated from normal dermal fibroblasts by transfecting plasmids encoding for six factors: OCT4, SOX2, KLF4, L-MYC, LIN28, and p53 shRNA. Then the iPSCs were treated with GSK3i to induce differentiation towards Primitive Streak Mesoderm (PSM). The differentiation was confirmed by qRT-PCR and immunofluorescence. PSM cells were transfected with Brachyury (Br)-encoding plasmid and the cells were encapsulated in Tetronic-tetraacrylate-fibrinogen (TF) hydrogel that mimics the NP environment (G'=1kPa), cultured in hypoxic conditions (2% O2) and with specifically defined growth media. The cells were also tested in vivo in a large animal model. IVD degeneration was induced after an annular puncture in pigs, 4 weeks later the cells were injected and IVDs were analyzed at 12 weeks after the injury using MRI, gene expression analysis and histology. Results: After short-term exposure of iPSCs to GSK3i there was a significant change in cell morphology, Primitive Streak Mesoderm (PSM) markers (Brachyury, MIXL1, FOXF1) were upregulated and markers of pluripotency (Nanog, Oct4, Sox2) were downregulated, both compared to the control group. PSM cells nucleofected with Br (PSM-Br) cultured in TF hydrogels retained the NC phenotype consistently for up to 8 weeks, as seen in the gene expression analysis. PSM-Br cells were co-cultured with bone marrow (BM)-derived mesenchymal stem cells (MSCs) which, with time, expressed the NC markers in higher levels, however the levels of expression in BM-MSCs alone did not change. Higher expression of NC and NP marker genes in human BM-MSCs was found to be induced by iNC-condition media (iNC-CM) than porcine NC-CM. The annular puncture induced IVD degeneration as early as 2 weeks after the procedure. The injected iNCs were detected in the degenerated discs after 8 weeks in vivo. The iNC-treated discs were found protected from degeneration. This was evident in histological analysis and changes in the pH levels, indicative of degeneration state of the discs, observed using qCEST MRI. Immunofluorescence stains show that their phenotype was consistent with the in vitro study, namely they still expressed the notochordal markers Keratin 18, Keratin 19, Noto and Brachyury. Conclusion: In the present study, we report a stepwise differentiation method to generate notochordal cells from human iPSCs. These cells not only demonstrate a sustainable notochordal cell phenotype in vitro and in vivo, but also show the functionality of notochordal cells and have protective effect in case of induced disc degeneration and prevent the change in the pH level of the injected IVDs. The mechanism of this effect could be suggested via the paracrine effect on resident cells, as it was shown in the in vitro studies with MSCs.


Subject(s)
Cell Differentiation/physiology , Induced Pluripotent Stem Cells/physiology , Intervertebral Disc Degeneration/pathology , Notochord/physiology , Animals , Biomarkers/metabolism , Cell Line , Cells, Cultured , Coculture Techniques/methods , Culture Media, Conditioned/metabolism , Female , Fetal Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Intervertebral Disc Degeneration/metabolism , Kruppel-Like Factor 4 , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Notochord/metabolism , Swine , Swine, Miniature , T-Box Domain Proteins/metabolism
15.
Commun Biol ; 2: 73, 2019.
Article in English | MEDLINE | ID: mdl-30820468

ABSTRACT

Restoration of cognitive function in old mice by transfer of blood or plasma from young mice has been attributed to reduced C-C motif chemokine ligand 11 (CCL11) and ß2-microglobulin, which are thought to suppress neurogenesis in the aging brain. However, the specific role of the hematopoietic system in this rejuvenation has not been defined and the importance of neurogenesis in old mice is unclear. Here we report that transplantation of young bone marrow to rejuvenate the hematopoietic system preserved cognitive function in old recipient mice, despite irradiation-induced suppression of neurogenesis, and without reducing ß2-microglobulin. Instead, young bone marrow transplantation preserved synaptic connections and reduced microglial activation in the hippocampus. Circulating CCL11 levels were lower in young bone marrow recipients, and CCL11 administration in young mice had the opposite effect, reducing synapses and increasing microglial activation. In conclusion, young blood or bone marrow may represent a future therapeutic strategy for neurodegenerative disease.


Subject(s)
Aging/physiology , Bone Marrow Transplantation/methods , Cognition/physiology , Learning/physiology , Memory/physiology , Rejuvenation/physiology , Age Factors , Animals , Chemokine CCL11/blood , Hippocampus/cytology , Hippocampus/physiology , Male , Mice, Congenic , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/physiology , beta 2-Microglobulin/metabolism
16.
ACS Appl Mater Interfaces ; 11(1): 169-175, 2019 Jan 09.
Article in English | MEDLINE | ID: mdl-30468382

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease (MND) characterized by a rapid loss of upper and lower motor neurons resulting in patient death from respiratory failure within 3-5 years of initial symptom onset. Although at least 30 genes of major effect have been reported, the pathobiology of ALS is not well understood. Compounding this is the lack of a reliable laboratory test which can accurately diagnose this rapidly deteriorating disease. Herein, we report on the phonon vibration energies of graphene as a sensitive measure of the composite dipole moment of the interfaced cerebrospinal fluid (CSF) that includes a signature-composition specific to the patients with ALS disease. The second-order overtone of in-plane phonon vibration energy (2D peak) of graphene shifts by 3.2 ± 0.5 cm-1 for all ALS patients studied in this work. Further, the amount of n-doping-induced shift in the phonon energy of graphene, interfaced with CSF, is specific to the investigated neurodegenerative disease (ALS, multiple sclerosis, and MND). By removing a severe roadblock in disease detection, this technology can be applied to study diagnostic biomarkers for researchers developing therapeutics and clinicians initiating treatments for neurodegenerative diseases.


Subject(s)
Amyotrophic Lateral Sclerosis , Graphite , Motor Neurons/metabolism , Amyotrophic Lateral Sclerosis/cerebrospinal fluid , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/therapy , Graphite/chemistry , Graphite/pharmacology , Humans , Motor Neurons/pathology
17.
Mol Ther ; 26(7): 1746-1755, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29784586

ABSTRACT

Ligament injuries occur frequently, substantially hindering routine daily activities and sports participation in patients. Surgical reconstruction using autogenous or allogeneic tissues is the gold standard treatment for ligament injuries. Although surgeons routinely perform ligament reconstructions, the integrity of these reconstructions largely depends on adequate biological healing of the interface between the ligament graft and the bone. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would lead to significantly improved ligament graft integration. To test this hypothesis, an anterior cruciate ligament reconstruction procedure was performed in Yucatan mini-pigs. A collagen scaffold was implanted in the reconstruction sites to facilitate recruitment of endogenous mesenchymal stem cells. Ultrasound-mediated reporter gene delivery successfully transfected 40% of cells recruited to the reconstruction sites. When BMP-6 encoding DNA was delivered, BMP-6 expression in the reconstruction sites was significantly enhanced. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to significantly enhanced osteointegration in all animals 8 weeks after surgery. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively improve ligament reconstruction in large animals, thereby addressing a major unmet orthopedic need and offering new possibilities for translation to the clinical setting.


Subject(s)
Allografts/cytology , Anterior Cruciate Ligament Reconstruction/methods , Ligaments/cytology , Tendons/cytology , Allografts/metabolism , Animals , Bone Morphogenetic Protein 6/metabolism , Collagen/metabolism , Gene Transfer Techniques , Ligaments/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Swine , Swine, Miniature , Tendons/metabolism , Transplantation, Homologous/methods , Ultrasonography/methods , X-Ray Microtomography/methods
18.
Stem Cells ; 36(7): 1122-1131, 2018 07.
Article in English | MEDLINE | ID: mdl-29656478

ABSTRACT

Early dysfunction of cortical motor neurons may underlie the initiation of amyotrophic lateral sclerosis (ALS). As such, the cortex represents a critical area of ALS research and a promising therapeutic target. In the current study, human cortical-derived neural progenitor cells engineered to secrete glial cell line-derived neurotrophic factor (GDNF) were transplanted into the SOD1G93A ALS rat cortex, where they migrated, matured into astrocytes, and released GDNF. This protected motor neurons, delayed disease pathology and extended survival of the animals. These same cells injected into the cortex of cynomolgus macaques survived and showed robust GDNF expression without adverse effects. Together this data suggests that introducing cortical astrocytes releasing GDNF represents a novel promising approach to treating ALS. Stem Cells 2018;36:1122-1131.


Subject(s)
Genetic Therapy/methods , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Amyotrophic Lateral Sclerosis , Animals , Disease Models, Animal , Motor Neurons , Rats
19.
Sci Transl Med ; 9(390)2017 05 17.
Article in English | MEDLINE | ID: mdl-28515335

ABSTRACT

More than 2 million bone-grafting procedures are performed each year using autografts or allografts. However, both options carry disadvantages, and there remains a clear medical need for the development of new therapies for massive bone loss and fracture nonunions. We hypothesized that localized ultrasound-mediated, microbubble-enhanced therapeutic gene delivery to endogenous stem cells would induce efficient bone regeneration and fracture repair. To test this hypothesis, we surgically created a critical-sized bone fracture in the tibiae of Yucatán mini-pigs, a clinically relevant large animal model. A collagen scaffold was implanted in the fracture to facilitate recruitment of endogenous mesenchymal stem/progenitor cells (MSCs) into the fracture site. Two weeks later, transcutaneous ultrasound-mediated reporter gene delivery successfully transfected 40% of cells at the fracture site, and flow cytometry showed that 80% of the transfected cells expressed MSC markers. Human bone morphogenetic protein-6 (BMP-6) plasmid DNA was delivered using ultrasound in the same animal model, leading to transient expression and secretion of BMP-6 localized to the fracture area. Micro-computed tomography and biomechanical analyses showed that ultrasound-mediated BMP-6 gene delivery led to complete radiographic and functional fracture healing in all animals 6 weeks after treatment, whereas nonunion was evident in control animals. Collectively, these findings demonstrate that ultrasound-mediated gene delivery to endogenous mesenchymal progenitor cells can effectively treat nonhealing bone fractures in large animals, thereby addressing a major orthopedic unmet need and offering new possibilities for clinical translation.


Subject(s)
Mesenchymal Stem Cells/metabolism , Stem Cells/metabolism , Tissue Engineering/methods , Animals , Bone Morphogenetic Protein 6/metabolism , Bone Regeneration/physiology , Mesenchymal Stem Cells/cytology , Microbubbles , Stem Cells/cytology , Swine , Swine, Miniature
20.
J Trauma Acute Care Surg ; 82(6): 1039-1048, 2017 06.
Article in English | MEDLINE | ID: mdl-28520686

ABSTRACT

INTRODUCTION: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease linked to repetitive head injuries. Chronic traumatic encephalopathy symptoms include changes in mood, behavior, cognition, and motor function; however, CTE is currently diagnosed only postmortem. Using a rat model of recurrent traumatic brain injury (TBI), we demonstrate rodent deficits that predict the severity of CTE-like brain pathology. METHODS: Bilateral, closed-skull, mild TBI was administered once per week to 35 wild-type rats; eight rats received two injuries (2×TBI), 27 rats received five injuries (5×TBI), and 13 rats were sham controls. To determine clinical correlates for CTE diagnosis, TBI rats were separated based on the severity of rotarod deficits and classified as "mild" or "severe" and further separated into "acute," "short," and "long" based on age at euthanasia (90, 144, and 235 days, respectively). Brain atrophy, phosphorylated tau, and inflammation were assessed. RESULTS: All eight 2×TBI cases had mild rotarod deficiency, 11 5×TBI cases had mild deficiency, and 16 cases had severe deficiency. In one cohort of rats, tested at approximately 235 days of age, balance, rearing, and grip strength were significantly worse in the severe group relative to both sham and mild groups. At the acute time period, cortical thinning, phosphorylated tau, and inflammation were not observed in either TBI group, whereas corpus callosum thinning was observed in both TBI groups. At later time points, atrophy, tau pathology, and inflammation were increased in mild and severe TBI groups in the cortex and corpus callosum, relative to sham controls. These injury effects were exacerbated over time in the severe TBI group in the corpus callosum. CONCLUSIONS: Our model of repeat mild TBI suggests that permanent deficits in specific motor function tests correlate with CTE-like brain pathology. Assessing balance and motor coordination over time may predict CTE diagnosis.


Subject(s)
Brain Concussion/complications , Chronic Traumatic Encephalopathy/diagnosis , Animals , Atrophy , Brain/pathology , Brain Concussion/pathology , Chronic Traumatic Encephalopathy/pathology , Chronic Traumatic Encephalopathy/physiopathology , Corpus Callosum/pathology , Disease Models, Animal , Male , Motor Skills , Phosphorylation , Postural Balance , Rats , Rats, Sprague-Dawley , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...