Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Biology (Basel) ; 13(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38785798

ABSTRACT

Escherichia coli (E. coli) is a frequent gram-negative bacterium that causes nosocomial infections, affecting more than 100 million patients annually worldwide. Bacterial lipopolysaccharide (LPS) from E. coli binds to toll-like receptor 4 (TLR4) and its co-receptor's cluster of differentiation protein 14 (CD14) and myeloid differentiation factor 2 (MD2), collectively known as the LPS receptor complex. LPCAT2 participates in lipid-raft assembly by phospholipid remodelling. Previous research has proven that LPCAT2 co-localises in lipid rafts with TLR4 and regulates macrophage inflammatory response. However, no published evidence exists of the influence of LPCAT2 on the gene expression of the LPS receptor complex induced by smooth or rough bacterial serotypes. We used RAW264.7-a commonly used experimental murine macrophage model-to study the effects of LPCAT2 on the LPS receptor complex by transiently silencing the LPCAT2 gene, infecting the macrophages with either smooth or rough LPS, and quantifying gene expression. LPCAT2 only significantly affected the gene expression of the LPS receptor complex in macrophages infected with smooth LPS. This study provides novel evidence that the influence of LPCAT2 on macrophage inflammatory response to bacterial infection depends on the LPS serotype, and it supports previous evidence that LPCAT2 regulates inflammatory response by modulating protein translocation to lipid rafts.

2.
Clin Chem ; 68(9): 1196-1201, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35652461

ABSTRACT

BACKGROUND: Nanopore sequencing is direct sequencing of a single-stranded DNA molecule using biological pores. A portable nanopore-based sequencing device from Oxford Nanopore Technologies (MinION) depends on driving a DNA molecule through nanopores embedded in a membrane using a voltage. Changes in current are then measured by a sensor, thousands of times per second and translated to nucleobases. METHODS: Genomic DNA (gDNA) samples (n = 13) were tested for Rh blood group D antigen (RHD) gene zygosity using droplet digital PCR. The RHD gene was amplified in 6 overlapping amplicons using long-range PCR. Amplicons were purified, and the sequencing library was prepared following the 1D Native barcoding gDNA protocol. Sequencing was carried out with 1D flow cells R9 version. Data analysis included basecalling, aligning to the RHD reference sequence, and calling variants. Variants detected were compared to the results acquired previously by the Ion Personal Genome Machine (Ion PGM). RESULTS: Up to 500× sequence coverage across the RHD gene allowed accurate variant calling. Exonic changes in the RHD gene allowed RHD allele determination for all samples sequenced except 1 RHD homozygous sample, where 2 heterozygous RHD variant alleles are suspected. There were 3 known variant RHD alleles (RHD*01W.02, RHD*11, and RHD*15) and 6 novel RHD variant alleles, as previously seen in Ion PGM sequencing data for these samples. CONCLUSIONS: MinION was effective in blood group genotyping, provided enough sequencing data to achieve high coverage of the RHD gene, and enabled confident calling of variants and RHD allele determination.


Subject(s)
Nanopore Sequencing , Nanopores , Alleles , Genotype , Humans , Rh-Hr Blood-Group System/genetics
3.
Blood Adv ; 4(20): 4994-5001, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33057632

ABSTRACT

Fetal RHD screening for targeted routine antenatal anti-D prophylaxis has been implemented in many countries, including Finland, since the 2010s. Comprehensive knowledge of the RHD polymorphism in the population is essential for the performance and safety of the anti-D prophylaxis program. During the first 3 years of the national screening program in Finland, over 16 000 samples from RhD- women were screened for fetal RHD; among them, 79 samples (0.5%) containing a maternal variant allele were detected. Of the detected maternal variants, 35 cases remained inconclusive using the traditional genotyping methods and required further analysis by next-generation sequencing (NGS) of the whole RHD gene to uncover the variant allele. In addition to the 13 RHD variants that have been previously reported in different populations, 8 novel variants were also detected, indicating that there is more variation of RHD in the RhD- Finnish population than has been previously known. Three of the novel alleles were identified in multiple samples; thus, they are likely specific to the original Finnish population. National screening has thus provided new information about the diversity of RHD variants in the Finnish population. The results show that NGS is a powerful method for genotyping the highly polymorphic RHD gene compared with traditional methods that rely on the detection of specific nucleotides by polymerase chain reaction amplification.


Subject(s)
Pregnant Women , Rh-Hr Blood-Group System , Female , Finland , High-Throughput Nucleotide Sequencing , Humans , Pregnancy , Prenatal Diagnosis , Rh-Hr Blood-Group System/genetics
4.
Blood Adv ; 2(20): 2713-2723, 2018 10 23.
Article in English | MEDLINE | ID: mdl-30337299

ABSTRACT

The Rh blood group system (ISBT004) is the second most important blood group after ABO and is the most polymorphic one, with 55 antigens encoded by 2 genes, RHD and RHCE This research uses next-generation sequencing (NGS) to sequence the complete RHD gene by amplifying the whole gene using overlapping long-range polymerase chain reaction (LR-PCR) amplicons. The aim was to study different RHD alleles present in the population to establish reference RHD allele sequences by using the analysis of intronic single-nucleotide polymorphisms (SNPs) and their correlation to a specific Rh haplotype. Genomic DNA samples (n = 69) from blood donors of different serologically predicted genotypes including R1R1 (DCe/DCe), R2R2 (DcE/DcE), R1R2 (DCe/DcE), R2RZ (DcE/DCE), R1r (DCe/dce), R2r (DcE/dce), and R0r (Dce/dce) were sequenced and data were then mapped to the human genome reference sequence hg38. We focused on the analysis of hemizygous samples, as these by definition will only have a single copy of RHD For the 69 samples sequenced, different exonic SNPs were detected that correlate with known variants. Multiple intronic SNPs were found in all samples: 21 intronic SNPs were present in all samples indicating their specificity to the RHD*DAU0 (RHD*10.00) haplotype which the hg38 reference sequence encodes. Twenty-three intronic SNPs were found to be R2 haplotype specific, and 15 were linked to R1, R0, and RZ haplotypes. In conclusion, intronic SNPs may represent a novel diagnostic approach to investigate known and novel variants of the RHD and RHCE genes, while being a useful approach to establish reference RHD allele sequences.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Rh-Hr Blood-Group System/genetics , Gene Frequency , Humans
5.
Ther Adv Hematol ; 8(10): 277-291, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29051799

ABSTRACT

This review summarizes the salient points of the symposium 'Red Cell Genotyping 2015: Precision Medicine' held on 10 September 2015 in the Masur Auditorium of the National Institutes of Health. The specific aims of this 6th annual symposium were to: (1) discuss how advances in molecular immunohematology are changing patient care; (2) exemplify patient care strategies by case reports (clinical vignettes); (3) review the basic molecular studies and their current implications in clinical practice; (4) identify red cell genotyping strategies to prevent alloimmunization; and (5) compare and contrast future options of red cell genotyping in precision transfusion medicine. This symposium summary captured the state of the art of red cell genotyping and its contribution to the practice of precision medicine.

6.
Clin Chem ; 63(8): 1388-1397, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28615230

ABSTRACT

BACKGROUND: Paternal zygosity testing is used for determining homo- or hemizygosity of RHD in pregnancies that are at a risk of hemolytic disease of the fetus and newborn. At present, this is achieved by using real-time PCR or the Rhesus box PCR, which can be difficult to interpret and unreliable, particularly for black African populations. METHODS: DNA samples extracted from 53 blood donors were analyzed using 2 multiplex reactions for RHD-specific targets against a reference (AGO1)2 to determine gene dosage by digital PCR. Results were compared with serological data, and the correct genotype for 2 discordant results was determined by long-range PCR (LR-PCR), next-generation sequencing, and conventional Sanger sequencing. RESULTS: The results showed clear and reliable determination of RHD zygosity using digital PCR and revealed that 4 samples did not match the serologically predicted genotype. Sanger sequencing and long-range PCR followed by next-generation sequencing revealed that the correct genotypes for samples 729M and 351D, which were serologically typed as R1R2 (DCe/DcE), were R2r' (DcE/dCe) for 729M and R1r″ (DCe/dcE), R0ry (Dce/dCE), or RZr (DCE/dce) for 351D, in concordance with the digital PCR data. CONCLUSIONS: Digital PCR provides a highly accurate method to rapidly define blood group zygosity and has clinical application in the analysis of Rh phenotyped or genotyped samples. The vast majority of current blood group genotyping platforms are not designed to define zygosity, and thus, this technique may be used to define paternal RH zygosity in pregnancies that are at a risk of hemolytic disease of the fetus and newborn and can distinguish between homo- and hemizygous RHD-positive individuals.


Subject(s)
Hemizygote , Homozygote , Polymerase Chain Reaction/methods , Rh-Hr Blood-Group System/genetics , Humans , Phenotype , Time Factors
7.
Clin Chem ; 61(11): 1399-407, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26354802

ABSTRACT

BACKGROUND: Noninvasive genotyping of fetal RHD (Rh blood group, D antigen) can prevent the unnecessary administration of prophylactic anti-D to women carrying RHD-negative fetuses. We evaluated laboratory methods for such genotyping. METHODS: Blood samples were collected in EDTA tubes and Streck® Cell-Free DNA™ blood collection tubes (Streck BCTs) from RHD-negative women (n = 46). Using Y-specific and RHD-specific targets, we investigated variation in the cell-free fetal DNA (cffDNA) fraction and determined the sensitivity achieved for optimal and suboptimal samples with a novel Droplet Digital™ PCR (ddPCR) platform compared with real-time quantitative PCR (qPCR). RESULTS: The cffDNA fraction was significantly larger for samples collected in Streck BCTs compared with samples collected in EDTA tubes (P < 0.001). In samples expressing optimal cffDNA fractions (≥4%), both qPCR and digital PCR (dPCR) showed 100% sensitivity for the TSPY1 (testis-specific protein, Y-linked 1) and RHD7 (RHD exon 7) assays. Although dPCR also had 100% sensitivity for RHD5 (RHD exon 5), qPCR had reduced sensitivity (83%) for this target. For samples expressing suboptimal cffDNA fractions (<2%), dPCR achieved 100% sensitivity for all assays, whereas qPCR achieved 100% sensitivity only for the TSPY1 (multicopy target) assay. CONCLUSIONS: qPCR was not found to be an effective tool for RHD genotyping in suboptimal samples (<2% cffDNA). However, when testing the same suboptimal samples on the same day by dPCR, 100% sensitivity was achieved for both fetal sex determination and RHD genotyping. Use of dPCR for identification of fetal specific markers can reduce the occurrence of false-negative and inconclusive results, particularly when samples express high levels of background maternal cell-free DNA.


Subject(s)
DNA/genetics , Genotyping Techniques/methods , Polymerase Chain Reaction/methods , Rh-Hr Blood-Group System/genetics , Sex Determination Analysis/methods , Blood Specimen Collection/methods , DNA/blood , Female , Genotype , Humans , Male , Pregnancy , Real-Time Polymerase Chain Reaction/methods , Rh-Hr Blood-Group System/blood , Sensitivity and Specificity
8.
Biosens Bioelectron ; 72: 313-9, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26002015

ABSTRACT

A novel printed graphene electrode modified with electrochemically reduced graphene oxide was developed for the detection of a specific oligonucleotide sequence. The graphene oxide was immobilized onto the surface of a graphene electrode via π-π bonds and electrochemical reduction of graphene oxide was achieved by cyclic voltammetry. A much higher redox current was observed from the reduced graphene oxide-graphene double-layer electrode, a 42% and 36.7% increase, respectively, in comparison with that of a bare printed graphene or reduced graphene oxide electrode. The good electron transfer activity is attributed to a combination of the large number of electroactive sites in reduced graphene oxide and the high conductivity nature of graphene. The probe ssDNA was further immobilized onto the surface of the reduced graphene oxide-graphene double-layer electrode via π-π bonds and then hybridized with its target cDNA. The change of peak current due to the hybridized dsDNA could be used for quantitative sensing of DNA concentration. It has been demonstrated that a linear range from 10(-7)M to 10(-12)M is achievable for the detection of human immunodeficiency virus 1 gene with a detection limit of 1.58 × 10(-13)M as determined by three times standard deviation of zero DNA concentration.


Subject(s)
DNA/analysis , Electrochemical Techniques/instrumentation , Graphite/chemistry , Oxides/chemistry , Biosensing Techniques/instrumentation , DNA Probes/chemistry , DNA, Single-Stranded/chemistry , Electrodes , Genes, Viral , HIV Infections/virology , HIV-1/genetics , Humans , Immobilized Nucleic Acids/chemistry , Limit of Detection , Nucleic Acid Hybridization , Oxidation-Reduction
9.
Expert Rev Hematol ; 7(6): 741-5, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25374152

ABSTRACT

Incompatibility of red cell and platelet antigens can lead to maternal alloimmunization causing hemolytic disease of the fetus & newborn and fetal neonatal alloimmune thrombocytopenia respectively. As the molecular background of these polymorphisms emerged, prenatal testing using initially fetal DNA obtained from invasively obtained amniotic fluid or chorionic villus was implemented. This evolved into testing using maternal plasma as source of fetal DNA, and this is in routine use as a safe non-invasive diagnostic that has no risk to the fetus of alloimmunization or spontaneous miscarriage. These tests were initially applied to high risk pregnancies, but has been applied on a mass scale, to screen fetuses in D-negative pregnant populations as national screening programs. Fetal neonatal alloimmune thrombocytopenia management has had comparatively small take up in non-invasive testing for causative fetal platelet alleles (e.g., HPA-1A), but mass scale genotyping of mothers to identify at risk HPA-1b1b pregnancies and their treatment with prophylactic anti-HPA-1A is being considered in at least one country (Norway).


Subject(s)
Erythroblastosis, Fetal/diagnosis , Prenatal Diagnosis/methods , Thrombocytopenia, Neonatal Alloimmune/diagnosis , Antigens, Human Platelet/analysis , Antigens, Human Platelet/genetics , Blood Group Antigens/analysis , Blood Group Antigens/genetics , Erythroblastosis, Fetal/genetics , Erythroblastosis, Fetal/therapy , Female , Genotype , Humans , Immunotherapy , Infant, Newborn , Integrin beta3 , Pregnancy , Thrombocytopenia, Neonatal Alloimmune/genetics , Thrombocytopenia, Neonatal Alloimmune/therapy
11.
Transfusion ; 53(7): 1559-74, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23043317

ABSTRACT

BACKGROUND: The presence of a D variant may hamper correct serologic D typing, which may result in D immunization. D variants can be determined via RHD genotyping. However, a convenient single assay to identify D variants is still lacking. We developed and evaluated a multiplex ligation-dependent probe amplification (MLPA) assay to determine clinically relevant RHD and RHCE variant alleles and RHD zygosity. STUDY DESIGN AND METHODS: We analyzed 236 cases (73 normal and 163 selected samples) with the RH-MLPA assay, which is able to determine 79 RHD and 17 RHCE variant alleles and RHD zygosity. To confirm the results, mutations were verified by RHD and/or RHCE exon-specific sequencing and RHD zygosity was verified by quantitative real-time polymerase chain reaction (PCR) for 18 cases. RESULTS: In 99% of the cases, the RH-MLPA assay correctly determined whether a person carried only wild-type RHD and RHCE alleles (n = 69) or (a) variant RHD allele(s) and/or (a) variant RHCE allele(s) (n = 164). In only three cases, including two new RHD variant alleles, the variant allele was not identified, due to lack of detecting probes. These were RHD*DCS2, a new partial RHD allele, RHD*525T (Phe175Leu), and a new D- null allele, RHD*443G (Thr148Arg). All RHD (n = 175) and RHCE variant alleles (n = 79) indicated by the RH-MLPA assay were confirmed by sequencing. RHD zygosity was confirmed by quantitative PCR. Two hematopoietic chimeras were recognized. CONCLUSION: The RH-MLPA genotyping assay is a fast, easy, and reliable method to determine almost all clinically relevant RHD and RHCE variant alleles, RHD zygosity, and RHD+/RHD- chimeras in blood donors, blood recipients, and pregnant women.


Subject(s)
Multiplex Polymerase Chain Reaction/methods , Rh-Hr Blood-Group System/genetics , Exons , Genotype , Humans , Real-Time Polymerase Chain Reaction
12.
Diagnostics (Basel) ; 3(2): 291-314, 2013 May 31.
Article in English | MEDLINE | ID: mdl-26835682

ABSTRACT

Down's syndrome (DS) is the most common genetic cause of developmental delay with an incidence of 1 in 800 live births, and is the predominant reason why women choose to undergo invasive prenatal diagnosis. However, as invasive tests are associated with around a 1% risk of miscarriage new non-invasive tests have been long sought after. Recently, the most promising approach for non-invasive prenatal diagnosis (NIPD) has been provided by the introduction of next generation sequencing (NGS) technologies. The clinical application of NIPD for DS detection is not yet applicable, as large scale validation studies in low-risk pregnancies need to be completed. Currently, prenatal screening is still the first line test for the detection of fetal aneuploidy. Screening cannot diagnose DS, but developing a more advanced screening program can help to improve detection rates, and therefore reduce the number of women offered invasive tests. This article describes how the prenatal screening program has developed since the introduction of maternal age as the original "screening" test, and subsequently discusses recent advances in detecting new screening markers with reference to both proteomic and bioinformatic techniques.

13.
J Proteomics ; 75(11): 3248-57, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22543281

ABSTRACT

Two new biomarkers, serum amyloid-P (SAP) and plasma C1-inhibitor protein are elevated in the maternal circulation of mothers carrying Down syndrome foetuses. Much emphasis of late\ has been put on the lack of translational tests being developed following the identification of new biomarkers. We have created a single-reaction-monitoring (SRM) tandem mass spectrometry-based assay for the quantitation of these biomarkers and compared these results with an in-house developed immunofluorescence-based technique (IF). This MS-based assay is a rapid 5 min test and a simple "one pot reaction," requiring only 5µl of plasma. To evaluate the potential of SRM-based quantitation in a clinical setting, SAP and C1-inhibitor were quantitated in 38 normal and Down syndrome affected pregnancies. Plasma SAP levels in the Down's group were significantly raised at 10-14 weeks (p<0.0015) and 14-20 weeks (p<0.0001). Plasma C1-inhibitor levels were also observed significantly elevated in the Down's group (10-14 weeks, p<0.0193, 14-20 weeks, p<0.0001). Analysis using the IF technique did not show any significant elevation of plasma SAP levels or C1-inhibitor levels. This rapid and sensitive assay demonstrates the potential of multiplexed tandem MS-based quantitation of proteins in chemical pathology labs and in a more cost-effective, accurate manner than conventionally used antibody methods.


Subject(s)
Complement C1 Inactivator Proteins/metabolism , Down Syndrome/blood , Pregnancy Trimester, First/blood , Pregnancy Trimester, Second/blood , Prenatal Diagnosis/methods , Serum Amyloid P-Component/metabolism , Tandem Mass Spectrometry/methods , Adult , Complement C1 Inhibitor Protein , Down Syndrome/diagnosis , Female , Fetus/metabolism , Humans , Pregnancy/blood
14.
J Proteomics ; 75(9): 2621-8, 2012 May 17.
Article in English | MEDLINE | ID: mdl-22456345

ABSTRACT

Using ProteinChip Technology (SELDI TOF MS), the maternal plasma of 53 chromosomally-normal control and 28 Down's syndrome affected pregnancies was profiled between 10 and 20 weeks' gestation. Preliminary studies demonstrated two distinct phases of changes in protein expression, the first at 10-14 weeks and second at 14-20 weeks. Using this data, analysis of the 10-14 weeks' plasma samples (Down's syndrome n=13, control n=20) showed the presence of a protein of mass 100.3 kDa that was elevated in the Down's syndrome group compared to the controls (p<0.002). This protein was further isolated using SAX Q-spin columns and identified using QTOF MS and Western blotting as being plasma protease C1-inhibitor. Analysis of the 14-20 week cohort demonstrated changes in protein expression of three additional proteins. Two of these proteins were found to be up-regulated (serum amyloid P-component, p<0.004 and transthyretin, p<0.006) and complement C3-α chain was observed to be down-regulated (p<0.0005). The identification of these biomarkers in maternal plasma and their potential to improve current Down's syndrome screening are discussed.


Subject(s)
Biomarkers/blood , Complement C1 Inhibitor Protein/analysis , Down Syndrome/diagnosis , Prenatal Diagnosis/methods , Down Syndrome/blood , Female , Humans , Prealbumin/analysis , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , Serum Amyloid P-Component/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Up-Regulation
16.
Proteome Sci ; 9: 56, 2011 Sep 19.
Article in English | MEDLINE | ID: mdl-21929753

ABSTRACT

BACKGROUND: Prenatal screening for Down Syndrome (DS) would benefit from an increased number of biomarkers to improve sensitivity and specificity. Improving sensitivity and specificity would decrease the need for potentially risky invasive diagnostic procedures. RESULTS: We have performed an in depth two-dimensional difference gel electrophoresis (2D DIGE) study to identify potential biomarkers. We have used maternal plasma samples obtained from first and second trimesters from mothers carrying DS affected fetuses compared with mothers carrying normal fetuses. Plasma samples were albumin/IgG depleted and expanded pH ranges of pH 4.5 - 5.5, pH 5.3 - 6.5 and pH 6 - 9 were used for two-dimensional gel electrophoresis (2DE). We found no differentially expressed proteins in the first trimester between the two groups. Significant up-regulation of ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4, complement proteins C1s subcomponent, C4-A, C5, and C9 and kininogen 1 were detected in the second trimester in maternal plasma samples where a DS affected fetus was being carried. However, ceruloplasmin could not be confirmed as being consistently up-regulated in DS affected pregnancies by Western blotting. CONCLUSIONS: Despite the in depth 2DE approach used in this study the results underline the deficiencies of gel-based proteomics for detection of plasma biomarkers. Gel-free approaches may be more productive to increase the number of plasma biomarkers for DS for non-invasive prenatal screening and diagnosis.

17.
Prenat Diagn ; 31(10): 967-72, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21769896

ABSTRACT

OBJECTIVE: Free fetal DNA (ffDNA) in the maternal plasma appears to originate mainly from the trophoblast. We tested the hypothesis that ffDNA concentration is increased in multiple pregnancies where trophoblastic mass has been shown to be increased. METHODS: Quantitative real-time PCR was used to measure the plasma concentration of DYS14 in singleton and twin pregnancies with one or two male fetuses. Royston and Wright's regression method was used to relate ffDNA to gestational age in singleton controls; z-scores were calculated for the multiple pregnancy subgroups. RESULTS: Fifty-five singleton and 65 twin pregnancies (36 with one and 29 with two male fetuses) were analysed. There was significantly higher ffDNA concentration in twin pregnancies with two male fetuses compared with pregnancies with one male fetus. In cases with two male fetuses, there was no statistically significant difference between monochorionic and dichorionic pregnancies. CONCLUSIONS: There is higher ffDNA concentration in multiple pregnancies, and this must be taken into account for future quantitative ffDNA applications.


Subject(s)
Chorion/anatomy & histology , DNA/blood , Fetus/metabolism , Pregnancy, Twin/blood , Prenatal Diagnosis/methods , Adolescent , Adult , Biomarkers/blood , Cell Cycle Proteins/blood , Cell Cycle Proteins/genetics , Chorion/metabolism , Chorionic Gonadotropin, beta Subunit, Human/blood , Chromosomes, Human, Y/genetics , Female , Humans , Male , Middle Aged , Pregnancy , Twins , Young Adult
18.
Haematologica ; 94(10): 1354-61, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19794081

ABSTRACT

BACKGROUND: Protein 4.1R is an important component of the red cell membrane skeleton. It imparts structural integrity and has transmembrane signaling roles by direct interactions with transmembrane proteins and other membrane skeletal components, notably p55 and calmodulin. DESIGN AND METHODS: Spontaneous and ligation-induced phosphatidylserine exposure on erythrocytes from two patients with 4.1R deficiency were studied, using CD47 glycoprotein and glycophorin C as ligands. We also looked for protein abnormalities in the 4.1R-based multiprotein complex. RESULTS: Phosphatidylserine exposure was significantly increased in 4.1R-deficient erythrocytes obtained from the two different individuals when ligands to CD47 glycoprotein were bound. Spontaneous phosphatidylserine exposure was normal. 4.1R, glycophorin C and p55 were missing or sharply reduced. Furthermore there was an alteration or deficiency of CD47 glycoprotein and a lack of CD44 glycoprotein. Based on a recent study in 4.1R-deficient mice, we found that there are clear functional differences between interactions of human red cell 4.1R and its murine counterpart. CONCLUSIONS: Glycophorin C is known to bind 4.1R, and we have defined previously that it also binds CD47. From our evidence, we suggest that 4.1R plays a role in the phosphatidylserine exposure signaling pathway that is of fundamental importance in red cell turnover. The linkage of CD44 to 4.1R may be relevant to this process.


Subject(s)
CD47 Antigen , Cytoskeletal Proteins/deficiency , Erythrocyte Membrane/metabolism , Erythrocytes/metabolism , Hyaluronan Receptors , Membrane Proteins/deficiency , Phosphatidylserines/blood , Adult , Amino Acid Sequence , CD47 Antigen/blood , CD47 Antigen/genetics , Child, Preschool , Cytoskeletal Proteins/blood , Erythrocyte Membrane/drug effects , Erythrocytes/drug effects , Humans , Hyaluronan Receptors/blood , Hyaluronan Receptors/genetics , Ligands , Male , Membrane Proteins/blood , Molecular Sequence Data , Phosphatidylserines/physiology , Signal Transduction/drug effects , Signal Transduction/physiology
19.
Curr Opin Obstet Gynecol ; 21(2): 175-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19262379

ABSTRACT

PURPOSE OF REVIEW: Free fetal nucleic acids, found in the plasma of every pregnant woman, have made a substantial impact on prenatal diagnosis. The past decade has seen the introduction of routine noninvasive prenatal diagnosis (NIPD) using DNA extracted from maternal plasma for a number of clinical complications of pregnancy, notably feto-maternal blood group incompatibility, fetal sexing and exclusion/detection of single-gene disorders. It appears that mass-scale analysis of all RhD-negative pregnant women will be adopted to conserve stocks of prophylactic anti-D and avoid the administration of a blood product unnecessarily. For the majority of prenatal diagnostic procedures, the assessment of trisomy, particularly trisomy 21, is the highest priority. Because RHD genotyping, fetal sexing and analysis of single-gene disorders all depend on the detection of paternally inherited alleles, they were relatively simple to adapt on the basis of PCR analysis of DNA obtained from maternal plasma. However, for assessment of chromosome copy number, this is not so straightforward. RECENT FINDINGS: The assessment of polymorphisms among placentally expressed mRNAs found in maternal plasma has enabled the detection of trisomy 21 fetuses using a combination of reverse transcriptase PCR and mass spectrometry to define allelic ratios of maternally and paternally inherited single nucleotide polymorphisms. Interesting recent developments also include the finding that direct sequence analysis of maternal plasma extracted DNA using 'next-generation' DNA sequencers can differentiate between normal and trisomy fetuses. SUMMARY: NIPD using nucleic acids obtained from maternal plasma and serum is now a clinical reality, particularly in the management of hemolytic disease of the fetus and newborn. Recent advances signal that NIPD for common aneuploidies will soon be possible.


Subject(s)
DNA/analysis , DNA/blood , Obstetrics/methods , Prenatal Diagnosis/methods , Cell-Free System , Female , Humans , Isoantibodies/immunology , Male , Plasma/metabolism , Polymorphism, Genetic , Pregnancy , RNA/analysis , RNA/blood , Rho(D) Immune Globulin , Serum/metabolism , Sex Determination Analysis , Trisomy/genetics
20.
Transfusion ; 49(6): 1059-69, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19309476

ABSTRACT

BACKGROUND: One branch of the RHD phylogenetic tree is represented by the weak D type 4 cluster of alleles with F223V as the primordial amino acid substitution. F223V as well as a large number of further substitutions causing D variants are located at the extracellular RhD protein vestibule, which represents the entrance to the transmembraneous channel of the RhD protein. STUDY DESIGN AND METHODS: RHD and RHCE nucleotide sequences were determined from genomic DNA and cDNA. D epitope patterns were established with commercial monoclonal anti-D panels. RESULTS: The RHD alleles DOL-1 and DOL-2 had the two amino acid substitutions M170T (509T>C) and F223V (667T>G) in common. DOL-2 harbored the additional substitution L378V (1132C>G). Both alleles were observed in Africans and are probably evolutionary related. DMI carried M170I (510G>A), which differed from the DOL-typical substitution. DFW and DFL harbored the substitutions H166P (497A>C) and Y165C (494A>G). The antigen densities of DOL-1, DFL, and DFW were only moderately reduced. CONCLUSION: DOL-1 and DOL-2 belong to the weak D type 4 cluster of RHD alleles. Together with DMI, DFL, and DFW they represent D variants with amino acid substitutions located at extracellular loops 3 or 4 lining the RhD protein vestibule. These substitutions were of minor influence on antigen density while adjacent substitutions in the transmembraneous section caused weak D antigen expression. All these D variants were partial D and alloanti-D immunizations have been observed in DOL-1, DMI, and DFL carriers. The substitution at position 170 causes partial D although located deep in the vestibule.


Subject(s)
Rh-Hr Blood-Group System/genetics , Alleles , Humans , Isoantibodies/immunology , Multigene Family , Phylogeny , Rho(D) Immune Globulin
SELECTION OF CITATIONS
SEARCH DETAIL
...