Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 32(20): 5498-5513, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37688483

ABSTRACT

Population genomics applied to game species conservation can help delineate management units, ensure appropriate harvest levels and identify populations needing genetic rescue to safeguard their adaptive potential. The ruffed grouse (Bonasa umbellus) is rapidly declining in much of the eastern USA due to a combination of forest maturation and habitat fragmentation. More recently, mortality from West Nile Virus may have affected connectivity of local populations; however, genetic approaches have never explicitly investigated this issue. In this study, we sequenced 54 individual low-coverage (~5X) grouse genomes to characterize population structure, assess migration rates across the landscape to detect potential barriers to gene flow and identify genomic regions with high differentiation. We identified two genomic clusters with no clear geographic correlation, with large blocks of genomic differentiation associated with chromosomes 4 and 20, likely due to chromosomal inversions. After excluding these putative inversions from the data set, we found weak but nonsignificant signals of population subdivision. Estimated gene flow revealed reduced rates of migration in areas with extensive habitat fragmentation and increased genetic connectivity in areas with less habitat fragmentation. Our findings provide a benchmark for wildlife managers to compare and scale the genetic diversity and structure of ruffed grouse populations in Pennsylvania and across the eastern USA, and we also reveal structural variation in the grouse genome that requires further study to understand its possible effects on individual fitness and population distribution.

2.
Front Endocrinol (Lausanne) ; 13: 801834, 2022.
Article in English | MEDLINE | ID: mdl-35311233

ABSTRACT

Colorful traits (i.e., ornaments) that signal quality have well-established relationships with individual condition and physiology. Furthermore, ornaments expressed in females may have indirect fitness effects in offspring via the prenatal physiology associated with, and social consequences of, these signaling traits. Here we examine the influence of prenatal maternal physiology and phenotype on condition-dependent signals of their offspring in adulthood. Specifically, we explore how prenatal maternal testosterone, corticosterone, and ornament color and size correlate with female and male offspring survival to adulthood and ornament quality in the lizard Sceloporus undulatus. Offspring of females with more saturated badges and high prenatal corticosterone were less likely to survive to maturity. Badge saturation and area were negatively correlated between mothers and their male offspring, and uncorrelated to those in female offspring. Maternal prenatal corticosterone was correlated negatively with badge saturation of male offspring in adulthood. Our results indicate that maternal ornamentation and prenatal concentrations of a stress-relevant hormone can lead to compounding fitness costs by reducing offspring survival to maturity and impairing expression of a signal of quality in surviving males. This mechanism may occur in concert with social costs of ornamentation in mothers. Intergenerational effects of female ornamentation and prenatal stress may be interdependent drivers of balancing selection and intralocus sexual conflict over signaling traits.


Subject(s)
Corticosterone , Lizards , Adult , Animals , Female , Humans , Lizards/physiology , Male , Mothers , Phenotype , Testosterone
3.
Ecol Evol ; 11(12): 7647-7659, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188841

ABSTRACT

Sex differences in animal coloration often result from sex-dependent regulatory mechanisms. Still, some species exhibit incomplete sexual dimorphism as females carry a rudimentary version of a costly male trait, leading to intralocus sexual conflict. The underlying physiology and condition dependence of these traits can inform why such conflicts remain unresolved. In eastern fence lizards (Sceloporus undulatus), blue iridophore badges are found in males and females, but melanin pigmentation underneath and surrounding badges is male-exclusive. We track color saturation and area of badges across sexual maturity, and their relationship to individual quality (body condition and immunocompetence) and relevant hormones (testosterone and corticosterone). Saturation and testosterone were positively correlated in both sexes, but hormone and trait had little overlap between males and females. Saturation was correlated with body condition and immunocompetence in males but not in females. Co-regulation by androgens may have released females from resource allocation costs of color saturation, even when in high condition. Badge area was independent of testosterone, but associated with low corticosterone in females, indicating that a nonsex hormone underlies incomplete sexual dimorphism. Given the evidence in this species for female reproductive costs associated with ornamentation, this sex-nonspecific regulation of an honest signal may underlie intralocus sexual conflict.

4.
PLoS One ; 15(5): e0233221, 2020.
Article in English | MEDLINE | ID: mdl-32433700

ABSTRACT

Conspicuous coloration is an important subject in social communication and animal behavior, and it can provide valuable insight into the role of visual signals in social selection. However, animal coloration can be plastic and affected by abiotic factors such as temperature, making its quantification problematic. In such cases, careful consideration is required so that metric choices are consistent across environments and least sensitive to abiotic factors. A detailed assessment of plastic trait in response to environmental conditions could help identify more robust methods for quantifying color. Temperature affects sexual ornamentation of eastern fence lizards, Sceloporus undulatus, with ventral coloration shifting from green to blue hues as temperatures rise, making the calculation of saturation (color purity) difficult under conditions where temperatures vary. We aimed to characterize how abiotic factors influence phenotypic expression and to identify a metric for quantifying animal color that is either independent from temperature (ideally) or best conserves individual's ranks. We compared the rates of change in saturation across two temperature treatments using seven metrics: three that are based on fixed spectral ranges (with two of them designed by us specifically for this system) and three that track the expressed hue (with one of them designed by us to circumvent spurious results in unornamented individuals). We also applied a lizard visual sensitivity model to understand how temperature-induced color changes may be perceived by conspecifics. We show that the rate of change in saturation between two temperatures is inconsistent across individuals, increasing at a higher rate in individuals with higher baseline saturation at lower temperatures. In addition, the relative color rank of individuals in a population varies with the temperature standardized by the investigator, but more so for some metrics than others. While we were unable to completely eliminate the effect of temperature, current tools for quantifying color allowed us to use spectral data to estimate saturation in a variety of ways and to largely preserve saturation ranks of individuals across temperatures while avoiding erroneous color scores. We describe our approaches and suggest best-practices for quantifying and interpreting color, particularly in cases where color changes in response to environmental factors.


Subject(s)
Lizards/physiology , Animals , Color , Environment , Female , Genitalia/anatomy & histology , Genitalia/physiology , Lizards/anatomy & histology , Male , Sex Characteristics , Skin Pigmentation/physiology , Temperature
5.
Mol Ecol ; 22(8): 2313-24, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23432192

ABSTRACT

Species with cryptic origins (i.e. those that cannot be reliably classed as native or non-native) present a particular challenge to our understanding of the generation and maintenance of biodiversity. Such species may be especially common on islands given that some islands have had a relatively recent history of human settlement. It is likely that select island species considered native might have achieved their current distributions via direct or indirect human actions. As an example, we explore the origins of eastern bluebirds (Sialia sialis bermudensis) on the island of Bermuda. Considered native to the island and a distinct subspecies, this population has diverged in morphology relative to mainland North America. Using microsatellite markers and simulation of island colonization, we show that the Bermuda population of bluebirds is the likely result of a single colonization event that occurred during the 1600s, making this a cryptic invader. To our knowledge, this is one of the youngest examples of a terrestrial vertebrate cryptic invader. We suggest that the eastern bluebird is not an isolated case of cryptic invader on either Bermuda or elsewhere and that caution be exercised when studying present-day distributions of organisms.


Subject(s)
Biodiversity , Microsatellite Repeats/genetics , Population/genetics , Songbirds/genetics , Animal Migration , Animals , Bermuda , Humans , Islands , Songbirds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...