Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474542

ABSTRACT

The use of conventional methods for the treatment of cancer, such as chemotherapy or radiotherapy, and approaches such as brachytherapy in conjunction with the unique properties of nanoparticles could enable the development of novel theranostic agents. The aim of our current study was to evaluate the potential of iron oxide nanoparticles, coated with alginic acid and polyethylene glycol, functionalized with the chemotherapeutic agent doxorubicin and the monoclonal antibody bevacizumab, to serve as a nanoradiopharmaceutical agent against breast cancer. Direct radiolabeling with the therapeutic isotope Lutetium-177 (177Lu) resulted in an additional therapeutic effect. Functionalization was accomplished at high percentages and radiolabeling was robust. The high cytotoxic effect of our radiolabeled and non-radiolabeled nanostructures was proven in vitro against five different breast cancer cell lines. The ex vivo biodistribution in tumor-bearing mice was investigated with three different ways of administration. The intratumoral administration of our functionalized radionanoconjugates showed high tumor accumulation and retention at the tumor site. Finally, our therapeutic efficacy study performed over a 50-day period against an aggressive triple-negative breast cancer cell line (4T1) demonstrated enhanced tumor growth retention, thus identifying the developed nanoparticles as a promising nanobrachytherapy agent against breast cancer.


Subject(s)
Breast Neoplasms , Nanoparticles , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Female , Bevacizumab , Tissue Distribution , Doxorubicin , Magnetic Iron Oxide Nanoparticles , Cell Line, Tumor , Breast Neoplasms/metabolism
2.
J Liposome Res ; : 1-12, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335203

ABSTRACT

Infantile hemangiomas (IH) are common benign soft tissue tumors, frequently affecting infants. While Propranolol Hydrochloride (Pro HCl) has emerged as a promising treatment for IH, its topical application remains challenging due to the need for stable and efficacious carriers. This study investigates the potential of preformulated liposomes as carriers for topical delivery of Pro HCl for the treatment of IH in compounding pharmacies. Liposomes loaded with Pro HCl were prepared using active pharmaceutical ingredient or commercially available propranolol tablets and various dilution media, including Water for Injection (WFI), Dextrose 5%, and NaCl 0.9%. The physicochemical properties of the liposomal formulations (Pro HCl content, encapsulation efficiency, loading capacity, and colloidal stability) were assessed over a 90-day storage at 4 °C. In vitro release kinetics and transdermal permeation of Pro HCl from liposomes were also evaluated. Liposome properties were influenced by the dilution medium. Pro HCl content remained stable in liposomes encapsulating API (Lipo-Pro), regardless of the dilution medium. Lipo-Pro showed sustained drug release over time, suggesting its potential for maintaining therapeutic levels. Pro HCl exhibited enhanced transdermal permeability from Lipo-Pro compared to aqueous solution, indicating its potential for topical IH treatment. Preformulated liposomes offer a stable and effective carrier for Pro HCl, potentially suitable for extemporaneous preparations in compounding pharmacies. Their enhanced transdermal permeability presents a promising alternative for topical IH treatment. This study provides valuable insights into the development of innovative and effective drug delivery strategies for managing IH, with future research focusing on in vivo applications and therapeutic potential.

3.
Pharmaceutics ; 16(2)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38399240

ABSTRACT

Solid tumors are composed of a highly complex and heterogenic microenvironment, with increasing metabolic status. This environment plays a crucial role in the clinical therapeutic outcome of conventional treatments and innovative antitumor nanomedicines. Scientists have devoted great efforts to conquering the challenges of the tumor microenvironment (TME), in respect of effective drug accumulation and activity at the tumor site. The main focus is to overcome the obstacles of abnormal vasculature, dense stroma, extracellular matrix, hypoxia, and pH gradient acidosis. In this endeavor, nanomedicines that are targeting distinct features of TME have flourished; these aim to increase site specificity and achieve deep tumor penetration. Recently, research efforts have focused on the immune reprograming of TME in order to promote suppression of cancer stem cells and prevention of metastasis. Thereby, several nanomedicine therapeutics which have shown promise in preclinical studies have entered clinical trials or are already in clinical practice. Various novel strategies were employed in preclinical studies and clinical trials. Among them, nanomedicines based on biomaterials show great promise in improving the therapeutic efficacy, reducing side effects, and promoting synergistic activity for TME responsive targeting. In this review, we focused on the targeting mechanisms of nanomedicines in response to the microenvironment of solid tumors. We describe responsive nanomedicines which take advantage of biomaterials' properties to exploit the features of TME or overcome the obstacles posed by TME. The development of such systems has significantly advanced the application of biomaterials in combinational therapies and in immunotherapies for improved anticancer effectiveness.

4.
Nanomaterials (Basel) ; 12(14)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35889715

ABSTRACT

Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.

5.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056762

ABSTRACT

Polyamine toxins (PATs) are conjugates of polyamines (PAs) with lipophilic carboxylic acids, which have been recently shown to present antiproliferative activity. Ten analogs of the spider PATs Agel 416, HO-416b, and JSTX-3 and the wasp PAT PhTX-433 were synthesized with changes in the lipophilic head group and/or the PA chain, and their antiproliferative activity was evaluated on MCF-7 and MDA-MB-231 breast cancer cells, using Agel 416 and HO-416b as reference compounds. All five analogs of PhTX-433 were of very low activity on both cell lines, whereas the two analogs of JSTX-3 were highly active only on the MCF-7 cell line with IC50 values of 2.63-2.81 µΜ. Of the remaining three Agel 416 or HO-416b analogs, only the one with the spermidine chain was highly active on both cells with IC50 values of 3.15-12.6 µM. The two most potent compounds in this series, Agel 416 and HO-416b, with IC50 values of 0.09-3.98 µΜ for both cell lines, were found to have a very weak cytotoxic effect on the MCF-12A normal breast cells. The present study points out that the structure of both the head group and the PA chain determine the strength of the antiproliferative activity of PATs and their selectivity towards different cells.


Subject(s)
Antineoplastic Agents/pharmacology , Polyamines/chemistry , Spider Venoms/chemical synthesis , Spider Venoms/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/pharmacology , Humans , Indoles/chemical synthesis , Indoles/pharmacology , MCF-7 Cells , Molecular Structure , Polyamines/chemical synthesis , Polyamines/pharmacology , Spiders , Structure-Activity Relationship , Wasps
6.
Adv Drug Deliv Rev ; 181: 114075, 2022 02.
Article in English | MEDLINE | ID: mdl-34883140

ABSTRACT

Nanomedicine has improved cancer treatment but not to the extent anticipated. Responsive nanomedicines enhanced by physical modalities (radiation, ultrasounds, alternating magnetic fields) or enhancing the activity of physical modalities such as radiotherapy to kill cancer represents an important approach in improving the safety and anticancer effectiveness. Importantly, the combined treatments have shown promise for the treatment of difficult to treat tumors, such as tumors that are resistant to chemotherapy (multi drug resistant, MDR) or radiotherapy and hypoxic tumors, and for the prevention of tumor metastasis. In this review, the mechanisms of responsive nanomedicines activity enhancement by physical means and vice versa are presented and preclinical and, most importantly, clinical evidence of the safety and efficacy of nanomedicines enhanced by or enhancing by physical modalities in treating solid tumors are critically discussed.


Subject(s)
Drug Delivery Systems/methods , Extracorporeal Shockwave Therapy/methods , Nanoparticle Drug Delivery System , Neoplasms/therapy , Photothermal Therapy/methods , Radiotherapy/methods , Antineoplastic Agents/administration & dosage , Combined Modality Therapy , Humans , Neoplasms/drug therapy , Reactive Oxygen Species
7.
Nanomaterials (Basel) ; 11(7)2021 Jun 25.
Article in English | MEDLINE | ID: mdl-34202370

ABSTRACT

The aim of this study was to develop a bioimaging probe based on magnetic iron oxide nanoparticles (MIONs) surface functionalized with the copolymer (p(MAA-g-EGMA)), which were radiolabeled with the positron emitter Gallium-68. The synthesis of the hybrid MIONs was realized by hydrolytic condensation of a single ferrous precursor in the presence of the copolymer. The synthesized MagP MIONs displayed an average Dh of 87 nm, suitable for passive targeting of cancerous tissues through the enhanced permeation and retention (EPR) effect after intravenous administration, while their particularly high magnetic content ascribes strong magnetic properties to the colloids. Two different approaches were explored to develop MIONs radiolabeled with 68Ga: the chelator-mediated approach, where the chelating agent NODAGA-NHS was conjugated onto the MIONs (MagP-NODAGA) to form a chelate complex with 68Ga, and the chelator-free approach, where 68Ga was directly incorporated onto the MIONs (MagP). Both groups of NPs showed highly efficient radiolabeling with 68Ga, forming constructs which were stable with time, and in the presence of PBS and human serum. Ex vivo biodistribution studies of [68Ga]Ga- MIONs showed high accumulation in the mononuclear phagocyte system (MPS) organs and satisfactory blood retention with time. In vivo PET imaging with [68Ga]Ga-MagP MIONs was in accordance with the ex vivo biodistribution results. Finally, the MIONs showed low toxicity against 4T1 breast cancer cells. These detailed studies established that [68Ga]Ga- MIONs exhibit potential for application as tracers for early cancer detection.

8.
ACS Appl Mater Interfaces ; 13(25): 29247-29256, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33942606

ABSTRACT

Magnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.


Subject(s)
Magnetite Nanoparticles/chemistry , Multimodal Imaging/methods , Photoacoustic Techniques/methods , Theranostic Nanomedicine/methods , A549 Cells , Animals , Cell Survival/drug effects , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/toxicity , Mice , Photochemical Processes
9.
Pharmaceutics ; 12(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371293

ABSTRACT

Silver nanoparticles (AgNPs) were synthesized using hydroalcoholic extracts of dittany (Origanum dictamnus), sage (Salvia officinalis), sea buckthorn (Elaeagnus rhamnoides, syn. Hippophae rhamnoides), and calendula (Calendula officinalis) as reducing agents. AgNPs synthesized using NaBH4 and citric acid were used as control. The impact of the origin of the extract and preparation conditions (light, temperature, reaction time) on the properties of the synthesized AgNPs was investigated. The structure, morphology, composition, physicochemical characteristics, and colloidal stability were characterized using dynamic laser scattering (DLS), ultraviolet-visible spectrophotometry (UV-/Vis), XRD, X-ray fluorescence (XRF), TEM, and FTΙR. The reduction of total phenolic and flavonoid content of the extracts after the reaction of AgNPs synthesis was also determined. Low IC50 values for all types of AgNPs revealed good antioxidant activity, attributable to the phenolic and flavonoid content of their surface. The results suggest that plant extract selection is important to the green synthesis of AgNPs because it affects the kinetics of their synthesis as well as their morphology, physicochemical characteristics, and colloidal stability. In vitro permeation studies on porcine skin revealed that AgNPs remained at the upper layers of stratum corneum and did not penetrate the skin barrier after 4 h of cutaneous application suggesting the safety of their application on intact skin for a relatively short time.

10.
Eur J Pharm Biopharm ; 154: 359-376, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32745710

ABSTRACT

The clay minerals are characterized as important minerals due to their specific properties. One of the most important groups of the clay minerals is the kaolinite's group minerals due to their morphology, availability and range of potential applications. Halloysite and kaolinite are investigated here for their pharmaceutical applications and especially for their potential in cancer treatment. This review study is focusing on the potential applications of the kaolinite's group minerals in cancer diagnosis and monitoring, cancer treatment, the avoidance of metastasis, and the relief of cancer pains. Anticancer drug-loaded formulations based on these minerals show high potential for the treatment of various types of cancer as they have been shown to exhibit high anticancer activity in cancer cell lines and cancer animal models, high biocompatibility, low side effects, and high drug bioavailability.


Subject(s)
Antineoplastic Agents/administration & dosage , Clay , Kaolin/administration & dosage , Neoplasms/diagnosis , Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Line, Tumor , Clay/chemistry , Cytotoxins/administration & dosage , Cytotoxins/chemistry , Cytotoxins/metabolism , Humans , Kaolin/chemistry , Kaolin/metabolism , Minerals/administration & dosage , Minerals/chemistry , Minerals/metabolism , Neoplasms/metabolism , Treatment Outcome
11.
Int J Nanomedicine ; 15: 4899-4918, 2020.
Article in English | MEDLINE | ID: mdl-32764924

ABSTRACT

PURPOSE: The use of chemotherapeutic agents to combat cancer is accompanied by high toxicity due to their inability to discriminate between cancer and normal cells. Therefore, cancer therapy research has focused on the targeted delivery of drugs to cancer cells. Here, we report an in vitro study of folate-poly(ethylene glycol)-poly(propylene succinate) nanoparticles (FA-PPSu-PEG-NPs) as a vehicle for targeted delivery of the anticancer drug paclitaxel in breast and cervical cancer cell lines. METHODS: Paclitaxel-loaded-FA-PPSu-PEG-NPs characterization was performed by in vitro drug release studies and cytotoxicity assays. The NPs cellular uptake and internalization mechanism were monitored by live-cell imaging in different cancer cell lines. Expression of folate receptor-α (FOLR1) was examined in these cell lines, and specific FOLR1-mediated entry of the FA-PPSu-PEG-NPs was investigated by free folic acid competition. Using inhibitors for other endocytic pathways, alternative, non-FOLR1 dependent routes for NPs uptake were also examined. RESULTS: Drug release experiments of Paclitaxel-loaded PPSu-PEG-NPs indicated a prolonged release of Paclitaxel over several days. Cytotoxicity of Paclitaxel-loaded PPSu-PEG-NPs was similar to free drug, as monitored in cancer cell lines. Live imaging of cells treated with either free Paclitaxel or Paclitaxel-loaded PPSu-PEG-NPs demonstrated tubulin-specific cell cycle arrest, with similar kinetics. Folate-conjugated NPs (FA-PPSu-PEG-NPs) targeted the FOLR1 receptor, as shown by free folic acid competition of the FA-PPSu-PEG-NPs cellular uptake in some of the cell lines tested. However, due to the differential expression of FOLR1 in the cancer cell lines, as well as the intrinsic differences between the different endocytic pathways utilized by different cell types, other mechanisms of nanoparticle cellular entry were also used, revealing that dynamin-dependent endocytosis and macropinocytosis pathways mediate, at least partially, cellular entry of the FA-PPSu-PEG NPs. CONCLUSION: Our data provide evidence that Paclitaxel-loaded-FA-PPSu-PEG-NPs can be used for targeted delivery of the drug, FA-PPSu-PEG-NPs can be used as vehicles for other anticancer drugs and their cellular uptake is mediated through a combination of FOLR1 receptor-specific endocytosis, and macropinocytosis. The exploration of the different cellular uptake mechanisms could improve treatment efficacy or allow a decrease in dosage of anticancer drugs.


Subject(s)
Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Folic Acid/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Liberation , Endocytosis/drug effects , Folate Receptor 1/metabolism , Folic Acid/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Paclitaxel/chemistry , Paclitaxel/pharmacology
12.
Pharmaceutics ; 12(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295134

ABSTRACT

Polymeric nanoparticles (NPs) encapsulating Pistacia lentiscus L. var. chia essential oil (EO) were prepared by a solvent evaporation method, in order to obtain a novel carrier for administration on the skin. The specific EO exhibits antimicrobial and anti-inflammatory properties thus stimulating considerable interest as a novel agent for the treatment of minor skin inflammations. The incorporation into nanoparticles could overcome the administration limitations that inserts the nature of the EO. Nanoparticles were prepared, utilizing poly(lactic acid) (PLA) as shell material, due to its biocompatibility and biodegradability, while the influence of surfactant type on NPs properties was examined. Two surfactants were selected, namely poly(vinyl alcohol) (PVA) and lecithin (LEC) and NPs' physicochemical characteristics i.e. size, polydispersity index (PdI) and ζ-potential were determined, not indicating significant differences (p > 0.05) between PLA/PVA-NPs (239.9 nm, 0.081, -29.1 mV) and PLA/LEC-NPs (286.1 nm, 0.167, -34.5 mV). However, encapsulation efficiency (%EE) measured by GC-MS, was clearly higher for PLA/PVA-NPs than PLA/LEC-NPs (37.45% vs. 9.15%, respectively). Moreover PLA/PVA-NPs remained stable over a period of 60 days. The in vitro release study indicated gradual release of the EO from PLA/PVA-NPs and more immediate from PLA/LEC-NPs. The above findings, in addition to the SEM images of the particles propose a potential structure of nanocapsules for PLA/PVA-NPs, where shell material is mainly consisted of PLA, enclosing the EO in the core. However, this does not seem to be the case for PLA/LEC-NPs, as the results indicated low EO content, rapid release and a considerable percentage of humidity detected by SEM. Furthermore, the Minimum Inhibitory Concentration (MIC) of the EO was determined against Escherichia coli and Bacillus subtilis, while NPs, however did not exhibit considerable activity in the concentration range applied. In conclusion, the surfactant selection may modify the release of EO incorporated in NPs for topical application allowing its action without interfering to the physiological skin microbiota.

13.
JPEN J Parenter Enteral Nutr ; 44(5): 928-939, 2020 07.
Article in English | MEDLINE | ID: mdl-32026498

ABSTRACT

BACKGROUND: Parenteral nutrition (PN) is associated with risks that could threaten the clinical condition of premature neonates hospitalized in the neonatal intensive care unit. In this work, risk-analysis methodology was implemented to contain the risks associated with the PN production process and improve PN safety. METHODS: The Failure Modes, Effects, and Criticality Analysis was performed by a multidisciplinary team. All potential failure modes of the PN preparation process were recorded, and associated risks were scored based on their severity, occurrence, and detectability, with a risk priority number (RPN). All identified failure scenarios and the respective work stages were ranked in descending order of criticality. Corrective actions were proposed to address critical points, and the safety of the process was reassessed by the same method in a prospective manner. RESULTS: The highest RPN scores were obtained with the PN composition calculation performed manually (RPN: 530) or electronically (RPN: 478), completion of the PN medical order form (RPN: 354), manual compounding of PN admixtures (RPN: 258), and the structure/organization/maintenance of the PN preparation unit (RPN: 133). The quality and safety of PN admixtures could be compromised by many critical factors, such as the increased particle-microbial load in the unit and the inadequate training/experience of the involved health professionals and their incompliance with the given instructions. The implementation of the proposed corrective measures is expected to reduce the risks of the overall PN production process by 67.5%. CONCLUSIONS: Improvement of the PN production process through risk-analysis methodologies enhances safety for premature neonates.


Subject(s)
Pharmacy Service, Hospital , Child , Child Nutritional Physiological Phenomena , Humans , Infant, Newborn , Parenteral Nutrition , Parenteral Nutrition, Total , Prospective Studies
14.
Clin Med Insights Oncol ; 13: 1179554919852933, 2019.
Article in English | MEDLINE | ID: mdl-31217699

ABSTRACT

OBJECTIVE: This study was designed to reevaluate and improve the quality and safety of the chemotherapy preparation in a Central Chemotherapy Preparation Unit of a Public Hospital. METHODS: A failure modes, effects, and criticality analysis (FMECA) was conducted by a multidisciplinary team. All potential failure modes at each stage of the chemotherapy preparation were recorded, and the associated risks were scored for their severity, occurrence, and detectability with a risk priority number (RPN). Corrective actions were suggested, and new RPNs were estimated for the modified process. RESULTS: Failure modes, effects, and criticality analysis and priority matrix construction, revealed that the partial compliance of Unit's premises with international standards (RPNstage: 307), the human errors throughout the compounding (RPNstage: 223)-labeling (RPNstage: 216)-prescribing (RPNstage: 198) steps, and the violation of working protocols by employees (RPNstage: 215), were the most important risks for which either urgent or immediate corrective actions had to be taken. Modifying the procedure through the proposed corrective actions is expected to lead to a significant (71.3%) risk containment, with a total RPNpreparation process reduction from 2102 to 604. CONCLUSIONS: Failure modes, effects, and criticality analysis and priority matrix development identified and prioritized effectively the risks associated with chemotherapy preparation allowing for the improvement of health services to cancer patients.

15.
ACS Omega ; 4(26): 22214-22227, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31891105

ABSTRACT

This study concerns the development of folic acid (FA)-functionalized iron oxide condensed colloidal magnetic clusters for a more selective delivery of doxorubicin (DOX) to tumor cancer cells overexpressing the folate receptor. Alginate-coated condensed magnetic nanoparticles (co-MIONs) were synthesized via an alkaline precipitation method of an iron precursor in the presence of sodium alginate. Poly(ethylene glycol) (OH-PEG-NH2) was conjugated to the carboxylic acid end group of alginate and folic acid (FA) was conjugated to the hydroxyl terminal group of PEG to produce folate-functionalized, pegylated co-MIONS (Mag-Alg-PEG-FA). The physicochemical properties of nanoparticles were fully characterized. DOX was loaded on the nanoparticles, and the cellular uptake and anticancer efficacy of the nanoparticles were examined in cancer cell lines expressing and not expressing the folate receptor. The biocompatibility of the carrier (blank nanoparticles) was also evaluated by cytocompatibility and hemocompatibility experiments. The nanoparticles exhibited sustained DOX release in aqueous buffers and biorelevant media, which was responsive to pH and external alternating current magnetic fields. The effect of the magnetic field on DOX percentage release appeared to be independent of the timing (onset time) of magnetic field application, providing flexibility to the magnetic control of drug release from the nanoparticles. The blank nanoparticles were not cytotoxic and did not cause hemolysis. The DOX-loaded and FA-functionalized nanoparticles exhibited increased uptake and caused increased apoptosis and cytotoxicity against the MDA-MB-231 cell line, expressing the folate receptor, compared to the MCF-7 cell line, not expressing the folate receptor. The application of a 0.5 T magnetic field during incubation of the nanoparticles with the cancer cells increased the cellular uptake and cytotoxicity of the nanoparticles. The obtained results indicate the potential of the folate-functionalized, pegylated co-MIONS for a more efficacious DOX delivery to cancer cells of solid tumors.

16.
Polymers (Basel) ; 12(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906238

ABSTRACT

Poly(2-vinyl pyridine)-b-poly(ethylene oxide) (P2VP-b-PEO) linear diblock copolymer and polystyrene-poly(ethylene oxide) (PS10PEO10) heteroarm star copolymer were used as building elements to prepare organic-inorganic hybrids. By using the layer-by-layer (LbL) methodology, these elements were integrated on mesoporous silica through non-covalent interactions, namely, ionic and H-bonding. For the latter, tannic acid (TA) was used as an intermediate layer. The deposition of the various layers was monitored by thermogravimetric analysis (TGA), electrophoretic measurements, and confocal microscopy. The final silica hybrid, bearing alternating P2VP-b-PEO and PS10PEO10 star layers was capable of carrying one hydrophilic and two hydrophobic chemical species in distinct compartments. These multicompartmental organic-inorganic hybrids could be used as nanostructured carriers for pH-responsive multiple drug delivery and potential theranostic applications.

17.
AAPS PharmSciTech ; 20(1): 13, 2018 Dec 17.
Article in English | MEDLINE | ID: mdl-30560417

ABSTRACT

Short gold nanorods were synthesized (average length 28.08 nm, average aspect ratio 3.54), which were functionalized with folic acid (FA) and 8-mercaptooctanoic acid (MOA) or 11-mercaptoundecanoic acid (MDA) and loaded with paclitaxel (PCT). FA was conjugated to the nanorods in order to render them targetable for cancer cells overexpressing folate receptors whereas MOA or MDA was attached on the nanorods in order to generate extra hydrophobic areas for entrapment of hydrophobic drugs such as PCT in the nanorods and in order to provide free carboxylic groups, which would allow for the conjugation of drug or other biofunctional molecules to the nanorods. The functionalized gold nanorods (GNRs-MOA-FA and GNRs-MDA-FA) did not exhibit any significant degree of aggregation in cell culture medium and blood plasma even after a prolonged incubation period of 7 days, indicating the adequate colloidal stability of the nanorods in these media. The functionalized nanorods exhibited satisfactory entrapment efficiency (around 40%) for PCT and released less than 25% of their PCT content in phosphate buffer pH 7.4 in 48 h. PCT entrapment efficiency was a little higher and PCT release rate a little lower in the GNRs-MOA-FA. Molecular analysis (qPCR) was used to find out that the MDA-MB-231 cancer cell line expresses the folate receptor (FL1R) whereas the MCF-7 cancer cell line does not. The PCT-loaded GNRs-MOA-FA were more cytotoxic than the PCT-loaded GNRs-MOA nanorods against the MDA-MB-231 cells, which probably relates to the higher uptake of the GNRs-MOA-FA nanorods by these cells. The opposite was true in the case of the MCF-7 cells.


Subject(s)
Drug Delivery Systems , Folic Acid/chemistry , Gold/chemistry , Nanotubes/chemistry , Paclitaxel/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Humans , MCF-7 Cells , Paclitaxel/pharmacology
18.
Nanomedicine (Lond) ; 13(19): 2435-2454, 2018 10.
Article in English | MEDLINE | ID: mdl-30311542

ABSTRACT

AIM: To synthesize magnetic nanoparticles loaded with the SGLT2-inhibitor canagliflozin (CANA) and evaluate its anticancer potential under normoxic and hypoxic conditions in combination or not with radiotherapy. MATERIAL & METHODS: Iron oxide nanoparticles were synthesized via an alkaline hydrolytic precipitation of iron precursor in the presence of poly(methacrylic acid)-graft-poly(ethyleneglycol methacrylate). CANA was conjugated to the nanoparticles using N-ethyl-N'-(3-dimethyl aminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide chemistry. The anticancer efficacy of the nanoparticles was evaluated in cancer cell lines and in a mouse PDV C57 tumor model. RESULTS: In the mouse xenograft cancer model, the combination of CANA-loaded nanoparticles with radiotherapy (in the presence of an external magnetic field at the tumor site) exhibited higher antitumor activity compared with the combination of free CANA with radiotherapy. CONCLUSION: The results obtained indicate the potential that the combination of selective delivery of a SGLT2 inhibitor such as CANA with radiotherapy holds as an anticancer treatment.


Subject(s)
Canagliflozin/pharmacology , Neoplasms/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Tumor Hypoxia/drug effects , Animals , Canagliflozin/chemistry , Combined Modality Therapy , Ferric Compounds/chemistry , Humans , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/chemistry , Mice , Neoplasms/genetics , Neoplasms/radiotherapy , Sodium-Glucose Transporter 2/drug effects , Sodium-Glucose Transporter 2 Inhibitors/chemistry , Xenograft Model Antitumor Assays
19.
ACS Omega ; 3(9): 11896-11908, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30320280

ABSTRACT

We report the fabrication of polymersomes, using as building blocks star-graft quarterpolymers, composed of hydrophobic polystyrene and pH-sensitive poly(2-vinylpyridine)-b-poly(acrylic acid) (P2VP-b-PAA) arms, emanated from a common nodule, enriched by thermosensitive poly(N-isopropylacrylamide) grafts covalently bonded on the PAA block-arms. These multicompartmental polymersomes were evaluated as nanocarriers for the encapsulation and controlled co-delivery of doxorubicin (hydrophilic) and paclitaxel (hydrophobic) chemotherapeutic agents. The polymersomes can load these drugs in different compartments and can efficiently be internalized in the human lung adenocarcinoma epithelial cells, delivering their cargo and inducing high cell apoptosis. The release kinetics of both anticancer agents was controlled differently by the environmental conditions (pH and temperature). Enhanced release was observed at the acidic pH 6.0 and under physiological temperature (37 °C). At the same total drug level, co-delivery of these drugs with the polymersomes caused enhanced cytotoxicity and induced significantly higher cell apoptosis in the cancer cell line compared to the polymersomes loaded with either of the two drugs.

20.
Eur J Pharm Sci ; 117: 177-186, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29477643

ABSTRACT

Paclitaxel (PTX)-loaded gold nanoparticles functionalized with mercaptooctanoic acid (MOA) and folic acid (FA) (AuMOA-FA) were encapsulated within pH-sensitive poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP-PEO) vesicles with the aim to develop a more selective injectable nano-formulation for PTX, lacking the side effects of the conventional PTX delivery system. The size of the resulting composite vesicles was lower than 200 nm, i.e. it is suitable for tumor targeting applications taking advantage of the enhanced permeability and retention (EPR) effect. The vesicles did not aggregate in the presence of high electrolyte concentrations, indicating the colloidal stability of the vesicles. The vesicles did not leak their AuMOA-FA or PTX content at physiological pH of 7.4. However, AuMOA-FA and PTX release were significantly accelerated at acidic pHs resembling tumor environment and acidic intracellular compartments. PTX release from the vesicles at acidic pH apparently follows AuMOA-FA release from the vesicles. Flow cytometry measurements and confocal laser scanning microscopy images showed that the vesicles could enter A549 cancer cells in culture and that cellular uptake increased with time. Blank vesicles did not exhibit cytotoxicity and did not induce apoptosis in A549 cancer cells. The PTX currying vesicles exhibited comparable or a little higher cytotoxicity than free PTX. Both the PTX currying vesicles and free PTX induced A549 cells apoptosis, however the vesicle-encapsulated PTX induced a higher percentage of late apoptotic cells than free PTX.


Subject(s)
Antineoplastic Agents, Phytogenic/chemistry , Drug Carriers , Gold/chemistry , Metal Nanoparticles , Paclitaxel/chemistry , A549 Cells , Antineoplastic Agents, Phytogenic/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Caprylates/chemistry , Delayed-Action Preparations , Drug Compounding , Drug Liberation , Drug Stability , Folic Acid/chemistry , Humans , Hydrogen-Ion Concentration , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Nanotechnology , Paclitaxel/metabolism , Paclitaxel/pharmacology , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Solubility , Technology, Pharmaceutical/methods , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...