Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 6(4): 3063-9, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22439798

ABSTRACT

Intraband hole relaxation of colloidal Te-doped CdSe quantum dots is studied using state-selective transient absorption spectroscopy. The dots are excited at the band edge, and the defect band bleach caused by state filling of the hole is probed. Close to the defect energy, the hole relaxation is substantially slowed down, indicating a gap separating the defect state from the CdSe band edge. A clear dependence of the relaxation time with the QD's size is presented, implying that the hole relaxation is mediated by longitudinal optical (LO) phonon modes of the CdSe host. In addition, we find that overcoating the quantum dots by two monolayers of a ZnS shell extends the hole relaxation time by a factor of 2, suggesting a combined effect of LO phonons and surface effects governing intraband hole relaxation.

2.
Phys Chem Chem Phys ; 13(8): 3210-9, 2011 Feb 28.
Article in English | MEDLINE | ID: mdl-21229166

ABSTRACT

The energetics and dynamics of multiply excited states in single material colloidal quantum dots have already been shown to exhibit universal trends. Here we attempt to identify similar trends in exciton-exciton interactions within compound colloidal quantum dots. For this end, we thoroughly review previously available data and also present experimental data on several newly synthesized systems, focusing on core/shell nanocrystals with a type-II band alignment. A universal condition for the transition from binding to repulsion of the biexciton (type-I-type-II transition) is established in terms of the change in the exciton radiative lifetime. A scaling rule is also presented for the magnitude of exciton-exciton repulsion. In contrast, we do not identify a clear universal scaling of the non-radiative Auger recombination lifetime of the biexciton state. Finally, a perspective on future applications of engineered multiexcitonic states is presented.

3.
Nano Lett ; 10(1): 164-70, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19911830

ABSTRACT

We experimentally investigate carrier multiplication (CM) in type II CdTe/CdSe quantum dot (QD) heterostructures by the means of a simple and robust subnanosecond transient photoluminescence spectroscopy setup. Experimental conditions were set to minimize the blurring of the CM signature by extraneous effects. The extracted photon energy threshold for CM is consistent with previous studies in CdSe and CdTe QDs (around 2.65 times the type II energy band gap) and we can infer an upper bound to CM yield. This study indicates that, while CM is probably present in type II QD heterostructures below the CM threshold for each constituent separately, it exhibits only a modest yield.


Subject(s)
Colloids , Luminescent Measurements , Quantum Dots , Cadmium Compounds/chemistry , Crystallization , Light , Nanotechnology/methods , Photochemistry/methods , Photons , Selenium Compounds/chemistry , Sulfides/chemistry , Surface Properties , Tellurium/chemistry , Zinc Compounds/chemistry
4.
Opt Express ; 17(2): 963-9, 2009 Jan 19.
Article in English | MEDLINE | ID: mdl-19158912

ABSTRACT

We present a simplified single-beam scheme for depletionbased sub-diffraction-limited imaging which allows for less restrictive illumination conditions. This is done by introducing the concept of flu-orophores exhibiting emission depletion upon saturation. We discuss the circumstances under which such a depletion based process is possible, and derive the scaling of the spatial resolution utilizing this scheme. Next, we analyze the proper illumination conditions both in space and time required for sub diffraction limited imaging, and show that it is applicable only under pulsed excitation. Finally, our scheme's advantages and shortcomings relative to alternative realizations of depletion-based sub-diffraction-limited microscopy are discussed.

5.
Nano Lett ; 8(8): 2384-7, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18642954

ABSTRACT

The exciton-exciton interaction energy of tellurium doped CdSe colloidal quantum dots is experimentally investigated. The dots exhibit a strong Coulomb repulsion between the two excitons, which results in a huge measured biexciton blue shift of up to 300 meV. Such a strong Coulomb repulsion implies a very narrow hole wave function localized around the defect, which is manifested by a large Stokes shift. Moreover, we show that the biexciton blue shift increases linearly with the Stokes shift. This result is highly relevant for the use of colloidal QDs as optical gain media, where a large biexciton blue shift is required to obtain gain in the single exciton regime.

6.
Phys Rev Lett ; 100(1): 013906, 2008 Jan 11.
Article in English | MEDLINE | ID: mdl-18232768

ABSTRACT

We experimentally investigate the evolution of linear and nonlinear waves in a realization of the Anderson model using disordered one-dimensional waveguide lattices. Two types of localized eigenmodes, flat-phased and staggered, are directly measured. Nonlinear perturbations enhance localization in one type and induce delocalization in the other. In a complementary approach, we study the evolution on short time scales of delta-like wave packets in the presence of disorder. A transition from ballistic wave packet expansion to exponential (Anderson) localization is observed. We also find an intermediate regime in which the ballistic and localized components coexist while diffusive dynamics is absent. Evidence is found for a faster transition into localization under nonlinear conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...