Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 522, 2020 Jan 27.
Article in English | MEDLINE | ID: mdl-31988306

ABSTRACT

Most soil hydraulic information used in Earth System Models (ESMs) is derived from pedo-transfer functions that use easy-to-measure soil attributes to estimate hydraulic parameters. This parameterization relies heavily on soil texture, but overlooks the critical role of soil structure originated by soil biophysical activity. Soil structure omission is pervasive also in sampling and measurement methods used to train pedotransfer functions. Here we show how systematic inclusion of salient soil structural features of biophysical origin affect local and global hydrologic and climatic responses. Locally, including soil structure in models significantly alters infiltration-runoff partitioning and recharge in wet and vegetated regions. Globally, the coarse spatial resolution of ESMs and their inability to simulate intense and short rainfall events mask effects of soil structure on surface fluxes and climate. Results suggest that although soil structure affects local hydrologic response, its implications on global-scale climate remains elusive in current ESMs.

2.
Ecol Lett ; 17(6): 670-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24641086

ABSTRACT

Aerodynamic theory postulates that gliding airspeed, a major flight performance component for soaring avian migrants, scales with bird size and wing morphology. We tested this prediction, and the role of gliding altitude and soaring conditions, using atmospheric simulations and radar tracks of 1346 birds from 12 species. Gliding airspeed did not scale with bird size and wing morphology, and unexpectedly converged to a narrow range. To explain this discrepancy, we propose that soaring-gliding birds adjust their gliding airspeed according to the risk of grounding or switching to costly flapping flight. Introducing the Risk Aversion Flight Index (RAFI, the ratio of actual to theoretical risk-averse gliding airspeed), we found that inter- and intraspecific variation in RAFI positively correlated with wing loading, and negatively correlated with convective thermal conditions and gliding altitude, respectively. We propose that risk-sensitive behaviour modulates the evolution (morphology) and ecology (response to environmental conditions) of bird soaring flight.


Subject(s)
Animal Migration , Birds/anatomy & histology , Birds/physiology , Flight, Animal/physiology , Animals , Behavior, Animal/physiology , Biological Evolution , Biomechanical Phenomena , Species Specificity , Wings, Animal/anatomy & histology
3.
Proc Biol Sci ; 278(1723): 3380-6, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-21471116

ABSTRACT

Aerial migrants commonly face atmospheric dynamics that may affect their movement and behaviour. Specifically, bird flight mode has been suggested to depend on convective updraught availability and tailwind assistance. However, this has not been tested thus far since both bird tracks and meteorological conditions are difficult to measure in detail throughout extended migratory flyways. Here, we applied, to our knowledge, the first comprehensive numerical atmospheric simulations by mean of the Regional Atmospheric Modeling System (RAMS) to study how meteorological processes affect the flight behaviour of migrating birds. We followed European bee-eaters (Merops apiaster) over southern Israel using radio telemetry and contrasted bird flight mode (flapping, soaring-gliding or mixed flight) against explanatory meteorological variables estimated by RAMS simulations at a spatial grid resolution of 250 × 250 m(2). We found that temperature and especially turbulence kinetic energy (TKE) determine bee-eater flight mode, whereas, unexpectedly, no effect of tailwind assistance was found. TKE during soaring-gliding was significantly higher and distinct from TKE during flapping. We propose that applying detailed atmospheric simulations over extended migratory flyways can elucidate the highly dynamic behaviour of air-borne organisms, help predict the abundance and distribution of migrating birds, and aid in mitigating hazardous implications of bird migration.


Subject(s)
Animal Migration/physiology , Atmosphere , Birds/physiology , Flight, Animal/physiology , Models, Theoretical , Wind , Animals , Biomechanical Phenomena , Computer Simulation , Convection , Israel , Telemetry
5.
Science ; 310(5756): 1944-7, 2005 Dec 23.
Article in English | MEDLINE | ID: mdl-16373572

ABSTRACT

Carbon sequestration strategies highlight tree plantations without considering their full environmental consequences. We combined field research, synthesis of more than 600 observations, and climate and economic modeling to document substantial losses in stream flow, and increased soil salinization and acidification, with afforestation. Plantations decreased stream flow by 227 millimeters per year globally (52%), with 13% of streams drying completely for at least 1 year. Regional modeling of U.S. plantation scenarios suggests that climate feedbacks are unlikely to offset such water losses and could exacerbate them. Plantations can help control groundwater recharge and upwelling but reduce stream flow and salinize and acidify some soils.


Subject(s)
Carbon/metabolism , Environment , Trees/metabolism , Water/metabolism , Climate , Conservation of Natural Resources , Ecosystem , Rivers , Soil
6.
Nature ; 418(6896): 409-13, 2002 Jul 25.
Article in English | MEDLINE | ID: mdl-12140556

ABSTRACT

Long-distance dispersal (LDD) is central to species expansion following climate change, re-colonization of disturbed areas and control of pests. The current paradigm is that the frequency and spatial extent of LDD events are extremely difficult to predict. Here we show that mechanistic models coupling seed release and aerodynamics with turbulent transport processes provide accurate probabilistic descriptions of LDD of seeds by wind. The proposed model reliably predicts the vertical distribution of dispersed seeds of five tree species observed along a 45-m high tower in an eastern US deciduous forest. Simulations show that uplifting above the forest canopy is necessary and sufficient for LDD, hence, they provide the means to define LDD quantitatively rather than arbitrarily. Seed uplifting probability thus sets an upper bound on the probability of long-distance colonization. Uplifted yellow poplar seeds are on average lighter than seeds at the forest floor, but also include the heaviest seeds. Because uplifting probabilities are appreciable (as much as 1 5%), and tree seed crops are commonly massive, some LDD events will establish individuals that can critically affect plant dynamics on large scales.


Subject(s)
Seeds , Trees/physiology , Wind , Computer Simulation , Movement , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...