Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22282049

ABSTRACT

Altered myeloid inflammation and lymphopenia are hallmarks of severe infections, including with SARS-CoV-2. Here, we identified a gene program, defined by correlation with EN-RAGE (S100A12) gene expression, which was up-regulated in airway and blood myeloid cells from COVID-19 patients. The EN-RAGE program was expressed in 7 cohorts and observed in patients with both COVID-19 and acute respiratory distress syndrome (ARDS) from other causes. This program was associated with greater clinical severity and predicted future mechanical ventilation and death. EN-RAGE+ myeloid cells express features consistent with suppressor cell functionality, with low HLA-DR and high PD-L1 surface expression and higher expression of T cell-suppressive genes. Sustained EN-RAGE signature expression in airway and blood myeloid cells correlated with clinical severity and increasing expression of T cell exhaustion markers, such as PD-1. IL-6 treatment of monocytes in vitro upregulated many of the severity-associated genes in the EN-RAGE gene program, along with potential mediators of T cell suppression, such as IL-10. Blockade of IL-6 signaling by tocilizumab in a placebo-controlled clinical trial led to a rapid normalization of ENRAGE and T cell gene expression. This identifies IL-6 as a key driver of myeloid dysregulation associated with worse clinical outcomes in COVID-19 patients and provides insights into shared pathophysiological mechanisms in non-COVID-19 ARDS.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-514070

ABSTRACT

The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-514096

ABSTRACT

Tocilizumab, an anti-interleukin-6 receptor inhibitor, is recommended in global treatment guidelines for patients hospitalized with severe COVID-19. Using proteomic and transcriptomic analysis, we characterized the immune profile and identified cellular and molecular pathways directly modified by tocilizumab in peripheral blood samples collected from patients enrolled in the COVACTA study, a phase 3, randomized, double-blind, placebo-controlled trial, to assess the efficacy and safety of tocilizumab in hospitalized patients with severe COVID-19 pneumonia. We identified factors predicting disease severity and clinical outcomes, including markers of inflammation, lymphopenia, myeloid dysfunction, and organ injury. Proteomic analysis confirmed a pharmacodynamic effect for tocilizumab. Transcriptomic analysis revealed that tocilizumab treatment leads to faster resolution of lymphopenia and myeloid dysfunction associated with severe COVID-19, thus defining an anti-inflammatory mechanism of action for the beneficial effects of tocilizumab in patients hospitalized with COVID-19. One sentence summaryInterleukin-6 receptor blockade with tocilizumab accelerated resolution of myeloid dysfunction and lymphopenia in patients hospitalized with COVID-19

4.
Toni M. Delorey; Carly G. K. Ziegler; Graham Heimberg; Rachelly Normand; Yiming Yang; Asa Segerstolpe; Domenic Abbondanza; Stephen J. Fleming; Ayshwarya Subramanian; Daniel T. Montoro; Karthik A. Jagadeesh; Kushal Dey; Pritha Sen; Michal Slyper; Yered Pita-Juarez; Devan Phillips; Zohar Bloom-Ackermann; Nick Barkas; Andrea Ganna; James Gomez; Erica Normandin; Pourya Naderi; Yury V. Popov; Siddharth S. Raju; Sebastian Niezen; Linus T.-Y. Tsai; Katherine J. Siddle; Malika Sud; Victoria M. Tran; Shamsudheen Karuthedath Vellarikkal; Liat Amir-Zilberstein; Joseph M Beechem; Olga R. Brook; Jonathan Chen; Prajan Divakar; Phylicia Dorceus; Jesse M Engreitz; Adam Essene; Donna M. Fitzgerald; Robin Fropf; Steven Gazal; Joshua Gould; Tyler Harvey; Jonathan Hecht; Tyler Hether; Judit Jane-Valbuena; Michael Leney-Greene; Hui Ma; Cristin McCabe; Daniel E. McLoughlin; Eric M. Miller; Christoph Muus; Mari Niemi; Robert Padera; Liuliu Pan; Deepti Pant; Jenna Pfiffner-Borges; Christopher J. Pinto; Jason Reeves; Marty Ross; Melissa Rudy; Erroll H. Rueckert; Michelle Siciliano; Alexander Sturm; Ellen Todres; Avinash Waghray; Sarah Warren; Shuting Zhang; Dan Zollinger; Lisa Cosimi; Rajat M Gupta; Nir Hacohen; Winston Hide; Alkes L. Price; Jayaraj Rajagopal; Purushothama Rao Tata; Stefan Riedel; Gyongyi Szabo; Timothy L. Tickle; Deborah Hung; Pardis C. Sabeti; Richard Novak; Robert Rogers; Donald E. Ingber; Z Gordon Jiang; Dejan Juric; Mehrtash Babadi; Samouil L. Farhi; James R. Stone; Ioannis S. Vlachos; Isaac H. Solomon; Orr Ashenberg; Caroline B.M. Porter; Bo Li; Alex K. Shalek; Alexandra-Chloe Villani; Orit Rozenblatt-Rosen; Aviv Regev.
Preprint in English | bioRxiv | ID: ppbiorxiv-430130

ABSTRACT

The SARS-CoV-2 pandemic has caused over 1 million deaths globally, mostly due to acute lung injury and acute respiratory distress syndrome, or direct complications resulting in multiple-organ failures. Little is known about the host tissue immune and cellular responses associated with COVID-19 infection, symptoms, and lethality. To address this, we collected tissues from 11 organs during the clinical autopsy of 17 individuals who succumbed to COVID-19, resulting in a tissue bank of approximately 420 specimens. We generated comprehensive cellular maps capturing COVID-19 biology related to patients demise through single-cell and single-nucleus RNA-Seq of lung, kidney, liver and heart tissues, and further contextualized our findings through spatial RNA profiling of distinct lung regions. We developed a computational framework that incorporates removal of ambient RNA and automated cell type annotation to facilitate comparison with other healthy and diseased tissue atlases. In the lung, we uncovered significantly altered transcriptional programs within the epithelial, immune, and stromal compartments and cell intrinsic changes in multiple cell types relative to lung tissue from healthy controls. We observed evidence of: alveolar type 2 (AT2) differentiation replacing depleted alveolar type 1 (AT1) lung epithelial cells, as previously seen in fibrosis; a concomitant increase in myofibroblasts reflective of defective tissue repair; and, putative TP63+ intrapulmonary basal-like progenitor (IPBLP) cells, similar to cells identified in H1N1 influenza, that may serve as an emergency cellular reserve for severely damaged alveoli. Together, these findings suggest the activation and failure of multiple avenues for regeneration of the epithelium in these terminal lungs. SARS-CoV-2 RNA reads were enriched in lung mononuclear phagocytic cells and endothelial cells, and these cells expressed distinct host response transcriptional programs. We corroborated the compositional and transcriptional changes in lung tissue through spatial analysis of RNA profiles in situ and distinguished unique tissue host responses between regions with and without viral RNA, and in COVID-19 donor tissues relative to healthy lung. Finally, we analyzed genetic regions implicated in COVID-19 GWAS with transcriptomic data to implicate specific cell types and genes associated with disease severity. Overall, our COVID-19 cell atlas is a foundational dataset to better understand the biological impact of SARS-CoV-2 infection across the human body and empowers the identification of new therapeutic interventions and prevention strategies.

5.
Preprint in English | bioRxiv | ID: ppbiorxiv-361287

ABSTRACT

Antibody engineering technologies face increasing demands for speed, reliability and scale. We developed CeVICA, a cell-free antibody engineering platform that integrates a novel generation method and design for camelid heavy-chain antibody VHH domain-based synthetic libraries, optimized in vitro selection based on ribosome display and a computational pipeline for binder prediction based on CDR-directed clustering. We applied CeVICA to engineer antibodies against the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike proteins and identified >800 predicted binder families. Among 14 experimentally-tested binders, 6 showed inhibition of pseudotyped virus infection. Antibody affinity maturation further increased binding affinity and potency of inhibition. Additionally, the unique capability of CeVICA for efficient and comprehensive binder prediction allowed retrospective validation of the fitness of our synthetic VHH library design and revealed direction for future refinement. CeVICA offers an integrated solution to rapid generation of divergent synthetic antibodies with tunable affinities in vitro and may serve as the basis for automated and highly parallel antibody generation.

6.
Preprint in English | bioRxiv | ID: ppbiorxiv-167098

ABSTRACT

SARS-CoV-2, the coronavirus that causes COVID-19, binds to angiotensin-converting enzyme 2 (ACE2) on human cells. Beyond the lung, COVID-19 impacts diverse tissues including the kidney. ACE2 is a key member of the Renin-Angiotensin-Aldosterone System (RAAS) which regulates blood pressure, largely through its effects on the kidney. RAAS blockers such as ACE inhibitors (ACEi) and Angiotensin Receptor Blockers (ARBs) are widely used therapies for hypertension, cardiovascular and chronic kidney diseases, and therefore, there is intense interest in their effect on ACE2 expression and its implications for SARS-CoV-2 pathogenicity. Here, we analyzed single-cell and single-nucleus RNA-seq of human kidney to interrogate the association of ACEi/ARB use with ACE2 expression in specific cell types. First, we performed an integrated analysis aggregating 176,421 cells across 49 donors, 8 studies and 8 centers, and adjusting for sex, age, donor and center effects, to assess the relationship of ACE2 with age and sex at baseline. We observed a statistically significant increase in ACE2 expression in tubular epithelial cells of the thin loop of Henle (tLoH) in males relative to females at younger ages, the trend reversing, and losing significance with older ages. ACE2 expression in tLoH increases with age in females, with an opposite, weak effect in males. In an independent cohort, we detected a statistically significant increase in ACE2 expression with ACEi/ARB use in epithelial cells of the proximal tubule and thick ascending limb, and endothelial cells, but the association was confounded in this small cohort by the underlying disease. Our study illuminates the dynamics of ACE2 expression in specific kidney cells, with implications for SARS-CoV-2 entry and pathogenicity.

7.
Preprint in English | medRxiv | ID: ppmedrxiv-20086801

ABSTRACT

Extensive virological testing is central to SARS-CoV-2 containment, but many settings face severe limitations on testing. Group testing offers a way to increase throughput by testing pools of combined samples; however, most proposed designs have not yet addressed key concerns over sensitivity loss and implementation feasibility. Here, we combine a mathematical model of epidemic spread and empirically derived viral kinetics for SARS-CoV-2 infections to identify pooling designs that are robust to changes in prevalence, and to ratify losses in sensitivity against the time course of individual infections. Using this framework, we show that prevalence can be accurately estimated across four orders of magnitude using only a few dozen pooled tests without the need for individual identification. We then exhaustively evaluate the ability of different pooling designs to maximize the number of detected infections under various resource constraints, finding that simple pooling designs can identify up to 20 times as many positives compared to individual testing with a given budget. We illustrate how pooling affects sensitivity and overall detection capacity during an epidemic and on each day post infection, finding that sensitivity loss is mainly attributed to individuals sampled at the end of infection when detection for public health containment has minimal benefit. Crucially, we confirm that our theoretical results can be accurately translated into practice using pooled human nasopharyngeal specimens. Our results show that accounting for variation in sampled viral loads provides a nuanced picture of how pooling affects sensitivity to detect epidemiologically relevant infections. Using simple, practical group testing designs can vastly increase surveillance capabilities in resource-limited settings.

8.
Christoph Muus; Malte D Luecken; Gokcen Eraslan; Avinash Waghray; Graham Heimberg; Lisa Sikkema; Yoshihiko Kobayashi; Eeshit Dhaval Vaishnav; Ayshwarya Subramanian; Christopher Smillie; Karthik Jagadeesh; Elizabeth Thu Duong; Evgenij Fiskin; Elena Torlai Triglia; Christophe Becavin; Meshal Ansari; Peiwen Cai; Brian Lin; Justin Buchanan; Jian Shu; Adam L Haber; Hattie Chung; Daniel T Montoro; Taylor Adams; Hananeh Aliee; Samuel J Allon; Zaneta Andrusivova; Ilias Angelidis; Orr Ashenberg; Kevin Bassler; Inbal Benhar; Joseph Bergenstrahle; Ludvig Bergenstrahle; Liam Bolt; Emelie Braun; Linh T Bui; Mark Chaffin; Evgeny Chichelnitskiy; Joshua Chiou; Thomas M Conlon; Michael S Cuoco; Marie Deprez; David S Fischer; Astrid Gillich; Joshua Gould; Austin J Gutierrez; Arun C Habermann; Tyler Harvey; Peng He; Xiaomeng Hou; Lijuan Hu; Alok Jaiswal; Peiyong Jiang; Theodoros Kapellos; Christin S Kuo; Ludvig Larsson; Michael A Leney-Greene; Kyungtae Lim; Monika Litvinukova; Ji Lu; Leif S Ludwig; Wendy Luo; Henrike Maatz; Elo Maddissoon; Lira Mamanova; Kasidet Manakongtreecheep; Ian Mbano; Alexi M McAdams; Ross J Metzger; Ahmad N Nabhan; Sarah K Nyquist; Jose Ordovas-Montanes; Lolita Penland; Olivier B Poirion; Segio Poli; CanCan Qi; Daniel Reichart; Ivan Rosas; Jonas Schupp; Rahul Sinha; Rene V Sit; Kamil Slowikowski; Michal Slyper; Neal Smith; Alex Sountoulidis; Maximilian Strunz; Dawei Sun; Carlos Talavera-Lopez; Peng Tan; Jessica Tantivit; Kyle J Travaglini; Nathan R Tucker; Katherine Vernon; Marc H Wadsworth III; Julia Waldman; Xiuting Wang; Wenjun Yan; Ali Onder Yildirim; William Zhao; Carly G K Ziegler; Aviv Regev; - The NHLBI LungMAP Consortium; - The Human Cell Atlas Lung Biological Network.
Preprint in English | bioRxiv | ID: ppbiorxiv-049254

ABSTRACT

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis.

9.
Preprint in English | bioRxiv | ID: ppbiorxiv-025635

ABSTRACT

The ongoing SARS-CoV-2 pandemic has already caused devastating losses. Exponential spread can be slowed by social distancing and population-wide isolation measures, but those place a tremendous burden on society, and, once lifted, exponential spread can re-emerge. Regular population-scale testing, combined with contact tracing and case isolation, should help break the cycle of transmission, but current detection strategies are not capable of such large-scale processing. Here we present a protocol for LAMP-Seq, a barcoded Reverse-Transcription Loop-mediated Isothermal Amplification (RT-LAMP) method that is highly scalable. Individual samples are stabilized, inactivated, and amplified in three isothermal heat steps, generating barcoded amplicons that can be pooled and analyzed en masse by sequencing. Using unique barcode combinations per sample from a compressed barcode space enables extensive pooling, potentially further reducing cost and simplifying logistics. We validated LAMP-Seq on 28 clinical samples, empirically optimized the protocol and barcode design, and performed initial safety evaluation. Relying on world-wide infrastructure for next-generation sequencing, and in the context of population-wide sample collection, LAMP-Seq could be scaled to analyze millions of samples per day.

SELECTION OF CITATIONS
SEARCH DETAIL
...