Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 806(Pt 3): 150708, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34600982

ABSTRACT

Contaminated marine sediments represent a critical threat towards human health and ecosystems, since they constitute a potential reservoir of toxic compounds release. In the present study, a bioslurry reactor was studied for the treatment of real marine sediments contaminated by petroleum hydrocarbons. The experimental campaign was divided in two periods: in the first period, microcosm trials were carried out to achieve useful indicators for biological hydrocarbon removal from sediments. The microcosm trials highlighted that the inoculum of halotolerant allochthonous bacteria provided the highest performance followed by autochthonous biomass. Based on the achieved results, in the second experimental period a bioslurry reactor was started up, based on a semisolid stirred tank reactor (STR) operated in batch mode. The process performances have been evaluated in terms of total petroleum hydrocarbon (TPH) removal, coupled with the characterization of microbial community through a Next Generation Sequencing (NGS) and phytotoxicity tests through the Germination Index (GI) with Lepidium Sativum seeds. The achieved results showed good hydrocarbons removal, equal to 40%, with a maximum removal rate of 220 mgTPH kg-1 d-1, but highlighting that high contaminant concentrations might affect negatively the overall removal performance. In general, the observed results were encouraging towards the feasibility of biological treatment of marine sediments contaminated by hydrocarbons. The microbiological analysis allowed the identification of taxa most involved in the degradation of TPH, highlighting after the treatment a shift in the microbial community from that of the raw sediment.


Subject(s)
Ecosystem , Petroleum , Biodegradation, Environmental , Geologic Sediments , Humans , Hydrocarbons
2.
Sci Total Environ ; 630: 462-468, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29486440

ABSTRACT

Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO3- removal and N2O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO3- concentrations (30, 50, 75mgNO3-NL-1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO2-) and nitrous oxide (N2O). In particular, it was observed that N2O production represent only a small fraction of removed NO3- during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%).

SELECTION OF CITATIONS
SEARCH DETAIL
...