Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 8(8): eabm4552, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35213218

ABSTRACT

GITR is a TNF receptor, and its activation promotes immune responses and drives antitumor activity. The receptor is activated by the GITR ligand (GITRL), which is believed to cluster receptors into a high-order array. Immunotherapeutic agonist antibodies also activate the receptor, but their mechanisms are not well characterized. We solved the structure of full-length mouse GITR bound to Fabs from the antibody DTA-1. The receptor is a dimer, and each subunit binds one Fab in an orientation suggesting that the antibody clusters receptors. Binding experiments with purified proteins show that DTA-1 IgG and GITRL both drive extensive clustering of GITR. Functional data reveal that DTA-1 and the anti-human GITR antibody TRX518 activate GITR in their IgG forms but not as Fabs. Thus, the divalent character of the IgG agonists confers an ability to mimic GITRL and cluster and activate GITR. These findings will inform the clinical development of this class of antibodies for immuno-oncology.

2.
Cell Rep ; 37(11): 110114, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34883043

ABSTRACT

Messenger RNA-based vaccines against COVID-19 induce a robust anti-SARS-CoV-2 antibody response with potent viral neutralization activity. Antibody effector functions are determined by their constant region subclasses and by their glycosylation patterns, but their role in vaccine efficacy is unclear. Moreover, whether vaccination induces antibodies similar to those in patients with COVID-19 remains unknown. We analyze BNT162b2 vaccine-induced IgG subclass distribution and Fc glycosylation patterns and their potential to drive effector function via Fcγ receptors and complement pathways. We identify unique and dynamic pro-inflammatory Fc compositions that are distinct from those in patients with COVID-19 and convalescents. Vaccine-induced anti-Spike IgG is characterized by distinct Fab- and Fc-mediated functions between different age groups and in comparison to antibodies generated during natural viral infection. These data highlight the heterogeneity of Fc responses to SARS-CoV-2 infection and vaccination and suggest that they support long-lasting protection differently.


Subject(s)
COVID-19/immunology , Glycosylation/drug effects , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , COVID-19 Vaccines/metabolism , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Israel/epidemiology , Male , Middle Aged , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods , Vaccine Efficacy , Vaccines, Synthetic/immunology , Vaccines, Synthetic/metabolism , mRNA Vaccines/immunology , mRNA Vaccines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...