Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34506972

ABSTRACT

BACKGROUND: Mechanism-based treatments such as bumetanide are being repurposed for autism spectrum disorder. We recently reported beneficial effects on repetitive behavioral symptoms that might be related to regulating excitation-inhibition (E/I) balance in the brain. Here, we tested the neurophysiological effects of bumetanide and the relationship to clinical outcome variability and investigated the potential for machine learning-based predictions of meaningful clinical improvement. METHODS: Using modified linear mixed models applied to intention-to-treat population, we analyzed E/I-sensitive electroencephalography (EEG) measures before and after 91 days of treatment in the double-blind, randomized, placebo-controlled Bumetanide in Autism Medication and Biomarker study. Resting-state EEG of 82 subjects out of 92 participants (7-15 years) were available. Alpha frequency band absolute and relative power, central frequency, long-range temporal correlations, and functional E/I ratio treatment effects were related to the Repetitive Behavior Scale-Revised (RBS-R) and the Social Responsiveness Scale 2 as clinical outcomes. RESULTS: We observed superior bumetanide effects on EEG, reflected in increased absolute and relative alpha power and functional E/I ratio and in decreased central frequency. Associations between EEG and clinical outcome change were restricted to subgroups with medium to high RBS-R improvement. Using machine learning, medium and high RBS-R improvement could be predicted by baseline RBS-R score and EEG measures with 80% and 92% accuracy, respectively. CONCLUSIONS: Bumetanide exerts neurophysiological effects related to clinical changes in more responsive subsets, in whom prediction of improvement was feasible through EEG and clinical measures.


Subject(s)
Autism Spectrum Disorder , Bumetanide , Humans , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/drug therapy , Bumetanide/pharmacology , Bumetanide/therapeutic use , Electroencephalography , Treatment Outcome
2.
Front Neurosci ; 16: 879451, 2022.
Article in English | MEDLINE | ID: mdl-35645706

ABSTRACT

Neuronal excitation-inhibition (E/I) imbalances are considered an important pathophysiological mechanism in neurodevelopmental disorders. Preclinical studies on tuberous sclerosis complex (TSC), suggest that altered chloride homeostasis may impair GABAergic inhibition and thereby E/I-balance regulation. Correction of chloride homeostasis may thus constitute a treatment target to alleviate behavioral symptoms. Recently, we showed that bumetanide-a chloride-regulating agent-improved behavioral symptoms in the open-label study Bumetanide to Ameliorate Tuberous Sclerosis Complex Hyperexcitable Behaviors trial (BATSCH trial; Eudra-CT: 2016-002408-13). Here, we present resting-state EEG as secondary analysis of BATSCH to investigate associations between EEG measures sensitive to network-level changes in E/I balance and clinical response to bumetanide. EEGs of 10 participants with TSC (aged 8-21 years) were available. Spectral power, long-range temporal correlations (LRTC), and functional E/I ratio (fE/I) in the alpha-frequency band were compared before and after 91 days of treatment. Pre-treatment measures were compared against 29 typically developing children (TDC). EEG measures were correlated with the Aberrant Behavioral Checklist-Irritability subscale (ABC-I), the Social Responsiveness Scale-2 (SRS-2), and the Repetitive Behavior Scale-Revised (RBS-R). At baseline, TSC showed lower alpha-band absolute power and fE/I than TDC. Absolute power increased through bumetanide treatment, which showed a moderate, albeit non-significant, correlation with improvement in RBS-R. Interestingly, correlations between baseline EEG measures and clinical outcomes suggest that most responsiveness might be expected in children with network characteristics around the E/I balance point. In sum, E/I imbalances pointing toward an inhibition-dominated network are present in TSC. We established neurophysiological effects of bumetanide although with an inconclusive relationship with clinical improvement. Nonetheless, our results further indicate that baseline network characteristics might influence treatment response. These findings highlight the possible utility of E/I-sensitive EEG measures to accompany new treatment interventions for TSC. Clinical Trial Registration: EU Clinical Trial Register, EudraCT 2016-002408-13 (www.clinicaltrialsregister.eu/ctr-search/trial/2016-002408-13/NL). Registered 25 July 2016.

3.
J Neurosci ; 42(11): 2221-2233, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35082120

ABSTRACT

Brain function depends on segregation and integration of information processing in brain networks often separated by long-range anatomic connections. Neuronal oscillations orchestrate such distributed processing through transient amplitude and phase coupling, yet surprisingly, little is known about local network properties facilitating these functional connections. Here, we test whether criticality, a dynamical state characterized by scale-free oscillations, optimizes the capacity of neuronal networks to couple through amplitude or phase, and transfer information. We coupled in silico networks which exhibit oscillations in the α band (8-16 Hz), and varied excitatory and inhibitory connectivity. We found that phase coupling of oscillations emerges at criticality, and that amplitude coupling, as well as information transfer, are maximal when networks are critical. Importantly, regulating criticality through modulation of synaptic gain showed that critical dynamics, as opposed to a static ratio of excitatory and inhibitory connections, optimize network coupling and information transfer. Our data support the idea that criticality is important for local and global information processing and may help explain why brain disorders characterized by local alterations in criticality also exhibit impaired long-range synchrony, even before degeneration of axonal connections.SIGNIFICANCE STATEMENT To perform adaptively in a changing environment, our brains dynamically coordinate activity across distant areas. Empirical evidence suggests that long-range amplitude and phase coupling of oscillations are systems-level mechanisms enabling transient formation of spatially distributed functional networks on the backbone of a relatively static structural connectome. However, surprisingly little is known about the local network properties that optimize coupling and information transfer. Here, we show that criticality, a dynamical state characterized by scale-free oscillations and a hallmark of neuronal network activity, optimizes the capacity of neuronal networks to couple through amplitude or phase and transfer information.


Subject(s)
Brain , Connectome , Brain/physiology , Head , Neurons
4.
Front Neuroinform ; 16: 1025847, 2022.
Article in English | MEDLINE | ID: mdl-36844437

ABSTRACT

Machine learning techniques such as deep learning have been increasingly used to assist EEG annotation, by automating artifact recognition, sleep staging, and seizure detection. In lack of automation, the annotation process is prone to bias, even for trained annotators. On the other hand, completely automated processes do not offer the users the opportunity to inspect the models' output and re-evaluate potential false predictions. As a first step toward addressing these challenges, we developed Robin's Viewer (RV), a Python-based EEG viewer for annotating time-series EEG data. The key feature distinguishing RV from existing EEG viewers is the visualization of output predictions of deep-learning models trained to recognize patterns in EEG data. RV was developed on top of the plotting library Plotly, the app-building framework Dash, and the popular M/EEG analysis toolbox MNE. It is an open-source, platform-independent, interactive web application, which supports common EEG-file formats to facilitate easy integration with other EEG toolboxes. RV includes common features of other EEG viewers, e.g., a view-slider, tools for marking bad channels and transient artifacts, and customizable preprocessing. Altogether, RV is an EEG viewer that combines the predictive power of deep-learning models and the knowledge of scientists and clinicians to optimize EEG annotation. With the training of new deep-learning models, RV could be developed to detect clinical patterns other than artifacts, for example sleep stages and EEG abnormalities.

5.
Sci Rep ; 10(1): 9195, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513931

ABSTRACT

Balance between excitation (E) and inhibition (I) is a key principle for neuronal network organization and information processing. Consistent with this notion, excitation-inhibition imbalances are considered a pathophysiological mechanism in many brain disorders including autism spectrum disorder (ASD). However, methods to measure E/I ratios in human brain networks are lacking. Here, we present a method to quantify a functional E/I ratio (fE/I) from neuronal oscillations, and validate it in healthy subjects and children with ASD. We define structural E/I ratio in an in silico neuronal network, investigate how it relates to power and long-range temporal correlations (LRTC) of the network's activity, and use these relationships to design the fE/I algorithm. Application of this algorithm to the EEGs of healthy adults showed that fE/I is balanced at the population level and is decreased through GABAergic enforcement. In children with ASD, we observed larger fE/I variability and stronger LRTC compared to typically developing children (TDC). Interestingly, visual grading for EEG abnormalities that are thought to reflect E/I imbalances revealed elevated fE/I and LRTC in ASD children with normal EEG compared to TDC or ASD with abnormal EEG. We speculate that our approach will help understand physiological heterogeneity also in other brain disorders.


Subject(s)
Autism Spectrum Disorder/physiopathology , Brain/physiopathology , Cortical Excitability , Inhibition, Psychological , Nerve Net/physiopathology , Adolescent , Adult , Child , Electroencephalography , Female , Humans , Male , Middle Aged , Young Adult
6.
Elife ; 92020 04 27.
Article in English | MEDLINE | ID: mdl-32324137

ABSTRACT

Understanding why identical stimuli give differing neuronal responses and percepts is a central challenge in research on attention and consciousness. Ongoing oscillations reflect functional states that bias processing of incoming signals through amplitude and phase. It is not known, however, whether the effect of phase or amplitude on stimulus processing depends on the long-term global dynamics of the networks generating the oscillations. Here, we show, using a computational model, that the ability of networks to regulate stimulus response based on pre-stimulus activity requires near-critical dynamics-a dynamical state that emerges from networks with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also find that networks exhibiting critical oscillations produce differing responses to the largest range of stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such network versatility is required.


Subject(s)
Brain/physiology , Nerve Net/physiology , Neurons/physiology , Brain/cytology , Computer Simulation , Humans , Visual Perception
7.
Front Hum Neurosci ; 12: 159, 2018.
Article in English | MEDLINE | ID: mdl-29740303

ABSTRACT

Ongoing brain dynamics have been proposed as a type of "neuronal noise" that can trigger perceptual switches when viewing an ambiguous, bistable stimulus. However, no prior study has directly quantified how such neuronal noise relates to the rate of percept reversals. Specifically, it has remained unknown whether individual differences in complexity of resting-state oscillations-as reflected in long-range temporal correlations (LRTC)-are associated with perceptual stability. We hypothesized that participants with stronger resting-state LRTC in the alpha band experience more stable percepts, and thereby fewer perceptual switches. Furthermore, we expected that participants who report less discontinuous thoughts during rest, experience less switches. To test this, we recorded electroencephalography (EEG) in 65 healthy volunteers during 5 min Eyes-Closed Rest (ECR), after which they filled in the Amsterdam Resting-State Questionnaire (ARSQ). This was followed by three conditions where participants attended an ambiguous structure-from-motion stimulus-Neutral (passively observe the stimulus), Hold (the percept for as long as possible), and Switch (as often as possible). LRTC of resting-state alpha oscillations predicted the number of switches only in the Hold condition, with stronger LRTC associated with less switches. Contrary to our expectations, there was no association between resting-state Discontinuity of Mind and percept stability. Participants were capable of controlling switching according to task goals, and this was accompanied by increased alpha power during Hold and decreased power during Switch. Fewer switches were associated with stronger task-related alpha LRTC in all conditions. Together, our data suggest that bistable visual perception is to some extent under voluntary control and influenced by LRTC of alpha oscillations.

8.
PLoS Biol ; 16(2): e2003453, 2018 02.
Article in English | MEDLINE | ID: mdl-29420565

ABSTRACT

The ascending modulatory systems of the brain stem are powerful regulators of global brain state. Disturbances of these systems are implicated in several major neuropsychiatric disorders. Yet, how these systems interact with specific neural computations in the cerebral cortex to shape perception, cognition, and behavior remains poorly understood. Here, we probed into the effect of two such systems, the catecholaminergic (dopaminergic and noradrenergic) and cholinergic systems, on an important aspect of cortical computation: its intrinsic variability. To this end, we combined placebo-controlled pharmacological intervention in humans, recordings of cortical population activity using magnetoencephalography (MEG), and psychophysical measurements of the perception of ambiguous visual input. A low-dose catecholaminergic, but not cholinergic, manipulation altered the rate of spontaneous perceptual fluctuations as well as the temporal structure of "scale-free" population activity of large swaths of the visual and parietal cortices. Computational analyses indicate that both effects were consistent with an increase in excitatory relative to inhibitory activity in the cortical areas underlying visual perceptual inference. We propose that catecholamines regulate the variability of perception and cognition through dynamically changing the cortical excitation-inhibition ratio. The combined readout of fluctuations in perception and cortical activity we established here may prove useful as an efficient and easily accessible marker of altered cortical computation in neuropsychiatric disorders.


Subject(s)
Catecholamines/physiology , Cerebral Cortex/physiology , Visual Perception/physiology , Adrenergic Uptake Inhibitors/pharmacology , Atomoxetine Hydrochloride/pharmacology , Brain Mapping , Cerebral Cortex/drug effects , Humans , Magnetoencephalography/methods , Models, Neurological , Photic Stimulation , Placebos , Psychophysics
SELECTION OF CITATIONS
SEARCH DETAIL
...