Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Health Phys ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037363

ABSTRACT

ABSTRACT: The present work models plutonium (Pu) biokinetics in a female former nuclear worker. Her bioassay measurements are available at the US Transuranium and Uranium Registries. The worker was internally exposed to a plutonium-americium mixture via acute inhalation at a nuclear weapons facility. She was medically treated with injections of 1 g Ca-DTPA on days 0, 5, and 14 after the intake. Between days 0 and 20, fecal and urine samples were collected and analyzed for 239Pu and 241Am. Subsequently, she was followed up for bioassay monitoring over 14 y, with additional post-treatment urine samples collected and analyzed for 239Pu. The uniqueness of this dataset is due to the availability of: (1) both early and long-term bioassay data from a female with plutonium intake; (2) data on chelation therapy for a female; and (3) fecal measurement results. Chelation therapy with Ca- and/or Zn-salts of DTPA is known to aid in reducing the internal radiation dose by enhancing the excretion of plutonium and americium from the body. Such enhancement affects plutonium biokinetics in the human body, posing a challenge to the internal dose assessment. The current radiation dose assessment practice is to exclude the data affected by Ca-DTPA from the analysis. The present analysis is the first to explicitly model the chelation-affected bioassay data in a female by using a newly developed chelation model. Thus, the bioassay data collected during and after the Ca-DTPA administrations were used for biokinetic modeling and dose assessment. The Markov Chain Monte Carlo method was used to investigate model parameter uncertainty, based on the bioassay data and assumed prior probability distributions. A χ2/nData (number of data points) ≈ 1 was observed in this study, which indicates self-consistency of the data with the model. Results of this study show that the worker's 239Pu intake was 12 Bq, with a committed effective dose to the whole-body of 1.2 mSv and a committed equivalent dose to the bone surfaces, liver, and lungs of 37.8, 9.1, and 0.8 mSv, respectively. This study also discusses the worker's dose reduction due to chelation treatment.

2.
Radiat Environ Biophys ; 63(1): 109-123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38197921

ABSTRACT

The United States Transuranium and Uranium Registries' (USTUR) female whole body tissue donor studied here was occupationally exposed to highly enriched uranium for 17 years. One hundred and twenty-nine tissue samples were collected at the time of death, 31 years post-exposure. These samples were radiochemically analyzed for uranium. The highest uranium concentration of 16.5 ± 2.0 µg kg-1 was measured in the lungs, and the lowest concentration of 0.11 ± 0.01 µg kg-1 in the liver. The thyroid had the highest concentration of 6.3 ± 2.9 µg kg-1 among systemic tissues. Mass-weighted average concentration in the entire skeleton was estimated to be 1.60 ± 0.19 µg kg-1. In the skeleton, uranium was non-uniformly distributed among different bones. Thirty-one years after the intake, approximately 40% of occupational uranium was still retained in the skeleton, followed by the kidneys (~ 30%), and the brain and liver (~ 10%). Systemic uranium was equally distributed between the skeleton and soft tissues. Uranium content in systemic organs followed the pattern: skeleton > > brain ≈ kidneys > heart ≈ liver > thyroid ≈ spleen. Uranium distribution in this female was compared to previously published USTUR data for male tissue donors. It is concluded that no difference in uranium systemic distribution was observed between female and male individuals. It is demonstrated that dose assessment based on the current ICRP biokinetic model overestimated the dose to the brain by 20%.


Subject(s)
Uranium , Humans , Male , Female , Uranium/analysis , Lung , Bone and Bones
3.
Radiat Environ Biophys ; 63(1): 81-95, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38217567

ABSTRACT

The United States Transuranium and Uranium Registries (USTUR) is a unique resource of data and materials for studying biokinetics of uranium in the human body. In this study, bioassay data and post-mortem organ activities from a female whole-body USTUR donor who was exposed to highly enriched uranium were analyzed using the IMBA Professional Plus® software to derive the best estimate of the total intake. The resulting radiation doses delivered to this individual's whole body and major target organs were calculated from estimated intake based on case-specific dose coefficients derived using the AIDE® software. Both intake and dose calculations were carried out using the biokinetic and dosimetric models recommended by the International Commission on Radiological Protection (ICRP) in its Occupational Intakes of Radionuclides publication series. Different exposure scenarios including chronic and acute inhalation intakes were tested. A combination of a chronic inhalation intake and two acute inhalation intakes appears to best describe the bioassay data. To fit this female individual's autopsy data, the transfer rate from the liver to the blood was increased by a factor of 8 and the transfer rate from the kidneys to the blood was decreased by a factor of 2.2. This resulted in the best fit to all data (p = 0.519). The total intake was estimated to be 44.1 kBq, and the committed effective dose was 211 mSv with 96.8% contributed by 234U. 96.6% of the committed effective dose was contributed by the lungs. The remaining 3.4% of the committed effective dose was contributed by all systemic tissues and organs with the highest contribution (0.40%) from the red bone marrow. It is concluded that the current ICRP models, with the adjustment for smoking status, adequately describe uranium biokinetics for this individual except retention in the liver and kidneys. However, this study was based on a single case and may not be sufficient to identify any apparent sex-specific differences in uranium biokinetics.


Subject(s)
Occupational Exposure , Uranium , Male , Humans , Female , Follow-Up Studies , Radiometry , Radioisotopes , Software , Occupational Exposure/analysis , Radiation Dosage
4.
Radiat Prot Dosimetry ; 199(15-16): 1838-1843, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819295

ABSTRACT

The Human Respiratory Tract Model described in Publication 130 of the International Commission on Radiological Protection provides some mechanisms to account for retention of material that can be subject to little to no mechanical transport or absorption into the blood. One of these mechanisms is 'binding', which refers to a process by which a fraction ('bound fraction') of the dissolved material chemically binds to the tissue of the airway wall. The value of the bound fraction can have a significant impact on the radiation doses imparted to different parts of the respiratory tract. To properly evaluate-and quantify-bound fraction for an element, one would need information on long-term retention of the element in individual compartments of the respiratory tract. Such data on regional retention of plutonium in the respiratory tract of four workers-who had inhaled materials with solubility ranging from soluble nitrate to very insoluble high-fired oxides-were obtained at the United States Transuranium and Uranium Registries. An assumption of bound fraction alone was found to be inconsistent with this dataset and also with a review of the literature. Several studies show evidence of retention of a large amount of Pu activity in the scar tissues of humans and experimental animals, and accordingly, a model structure with scar-tissue compartments was proposed. The transfer rates to these compartments were determined using Markov Chain Monte Carlo analysis of the bioassay and post-mortem data, considering the uncertainties associated with deposition, dissolution and particle clearance parameters. The models predicted that a significant amount-between 20 and 100% for the cases analyzed-of plutonium retained in the respiratory tract was sequestered in the scar tissues. Unlike chemically-bound Pu that irradiates sensitive epithelial cells, Pu in scar tissues may not be dosimetrically significant because the scar tissues absorb most, if not all, of the energy from alpha emissions.


Subject(s)
Plutonium , Animals , Humans , United States , Plutonium/analysis , Radiation Dosage , Cicatrix/metabolism , Models, Biological , Respiratory System/metabolism
5.
Radiat Prot Dosimetry ; 199(8-9): 681-688, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37225186

ABSTRACT

The skeleton is a major plutonium retention site in the human body. Estimation of the total plutonium activity in the skeleton is a challenging problem. For most tissue donors at the United States Transuranium and Uranium Registries, a limited number of bone samples is available. The skeleton activity is calculated using plutonium activity concentration (Cskel) and skeleton weight. In this study, latent bone modelling was used to estimate Cskel from the limited number of analysed bone samples. Data from 13 non-osteoporotic whole-body donors were used to develop latent bone model (LBM) to estimate Cskel for seven cases with four to eight analysed bone samples. LBM predictions were compared to Cskel estimated using an arithmetic mean in terms of accuracy and precision. For the studied cases, LBM offered a significant reduction of uncertainty of Cskel estimate.


Subject(s)
Plutonium , Humans , Skeleton , Radiopharmaceuticals , Registries , Uncertainty
6.
J Radiol Prot ; 42(3)2022 07 21.
Article in English | MEDLINE | ID: mdl-35785774

ABSTRACT

The US National Council on Radiation Protection and Measurements (NCRP) convened Scientific Committee 6-12 (SC 6-12) to examine methods for improving dose estimates for brain tissue for internally deposited radionuclides, with emphasis on alpha emitters. This Memorandum summarises the main findings of SC 6-12 described in the recently published NCRP Commentary No. 31, 'Development of Kinetic and Anatomical Models for Brain Dosimetry for Internally Deposited Radionuclides'. The Commentary examines the extent to which dose estimates for the brain could be improved through increased realism in the biokinetic and dosimetric models currently used in radiation protection and epidemiology. A limitation of most of the current element-specific systemic biokinetic models is the absence of brain as an explicitly identified source region with its unique rate(s) of exchange of the element with blood. The brain is usually included in a large source region calledOtherthat contains all tissues not considered major repositories for the element. In effect, all tissues inOtherare assigned a common set of exchange rates with blood. A limitation of current dosimetric models for internal emitters is that activity in the brain is treated as a well-mixed pool, although more sophisticated models allowing consideration of different activity concentrations in different regions of the brain have been proposed. Case studies for 18 internal emitters indicate that brain dose estimates using current dosimetric models may change substantially (by a factor of 5 or more), or may change only modestly, by addition of a sub-model of the brain in the biokinetic model, with transfer rates based on results of published biokinetic studies and autopsy data for the element of interest. As a starting place for improving brain dose estimates, development of biokinetic models with explicit sub-models of the brain (when sufficient biokinetic data are available) is underway for radionuclides frequently encountered in radiation epidemiology. A longer-term goal is development of coordinated biokinetic and dosimetric models that address the distribution of major radioelements among radiosensitive brain tissues.


Subject(s)
Radiation Protection , Radioisotopes , Brain , Kinetics , Models, Biological , Radiation Dosage , Radiometry/methods
7.
Int J Radiat Biol ; 98(4): 750-768, 2022.
Article in English | MEDLINE | ID: mdl-33900890

ABSTRACT

PURPOSE: This paper reviews the history of the radium dial workers in the United States, summarizes the scientific progress made since the last evaluation in the early 1990s, and discusses current progress in updating the epidemiologic cohort and applying new dosimetric models for radiation risk assessment. BACKGROUND: The discoveries of radiation and radioactivity led quickly to medical and commercial applications at the turn of the 20th century, including the development of radioluminescent paint, made by combining radium with phosphorescent material and adhesive. Workers involved with the painting of dials and instruments included painters, handlers, ancillary workers, and chemists who fabricated the paint. Dial painters were primarily women and, prior to the mid to late 1920s, would use their lips to give the brush a fine point, resulting in high intakes of radium. The tragic experience of the dial painters had a significant impact on industrial safety standards, including protection measures taken during the Manhattan Project. The dial workers study has formed the basis for radiation protection standards for intakes of radionuclides by workers and the public. EPIDEMIOLOGIC APPROACH: The mortality experience of 3,276 radium dial painters and handlers employed between 1913 and 1949 is being determined through 2019. The last epidemiologic follow-up was 30 years ago when most of these workers were still alive. Nearly 65% were born before 1920, 37.5% were teenagers when first hired, and nearly 50% were hired before 1930 when the habit of placing brushes in mouths essentially stopped. Comprehensive dose reconstruction techniques are being applied to estimate organ doses for each worker related to the intake of 226Ra, 228Ra, and associated photon exposures. Time dependent dose-response analyses will estimate lifetime risks for specific causes of death. DISCUSSION: The study of radium dial workers is part of the Million Person Study of low-dose health effects that is designed to evaluate radiation risks among healthy American workers and veterans. Despite being one of the most important and influential radiation effects studies ever conducted, shifting programmatic responsibilities and declining funding led to the termination of the radium program of studies in the early 1990s. Renewed interest and opportunity have arisen. With scientific progress made in dosimetric methodology and models, the ability to perform a study over the entire life span, and the potential applicability to other scenarios such as medicine, environmental contamination and space exploration, the radium dial workers have once again come to the forefront.


Subject(s)
Radiation Injuries , Radiation Protection , Radium , Adolescent , Female , Humans , Radioisotopes/analysis , Radiometry/methods , United States
8.
PLoS One ; 16(10): e0259057, 2021.
Article in English | MEDLINE | ID: mdl-34699566

ABSTRACT

PURPOSE: Radiation dose estimates in epidemiology typically rely on intake predictions based on urine bioassay measurements. The purpose of this article is to compare the conventional dosimetric estimates for radiation epidemiology with the estimates based on additional post-mortem tissue radiochemical analysis results. METHODS: The comparison was performed on a unique group of 11 former Manhattan Project nuclear workers, who worked with plutonium in the 1940s, and voluntarily donated their bodies to the United States Transuranium and Uranium Registries. RESULTS: Post-mortem organ activities were predicted using different sets of urine data and compared to measured activities. Use of urinalysis data collected during the exposure periods overestimated the systemic (liver+skeleton) deposition of 239Pu by 155±134%, while the average bias from using post-exposure urinalyses was -4±50%. Committed effective doses estimated using early urine data differed from the best estimate by, on average, 196±193%; inclusion of follow-up urine measurements in analyses decreased the mean bias to 0.6±36.3%. Cumulative absorbed doses for the liver, red marrow, bone surface, and brain were calculated for the actual commitment period. CONCLUSION: On average, post-exposure urine bioassay results were in good agreement with post-mortem tissue analyses and were more reliable than results of urine bioassays collected during the exposure.


Subject(s)
Occupational Exposure/analysis , Plutonium/urine , Radiation Exposure/analysis , Aged , Aged, 80 and over , Autopsy , Humans , Male , Middle Aged , Models, Theoretical , Radiation Dosage
9.
Radiat Prot Dosimetry ; 196(3-4): 167-183, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34595535

ABSTRACT

The respiratory tract tissues of four former nuclear workers with plutonium intakes were radiochemically analyzed post mortem by the United States Transuranium and Uranium Registries. Plutonium activities in the upper respiratory tract of these individuals were found to be higher than those predicted using the most recent biokinetic models described in publications of the International Commission on Radiological Protection. Modification of the model parameters, including the bound fraction, was not able to explain the data in one of the four individuals who had inhaled insoluble form of plutonium. Literature review points to the presence of-and a significant retention of-plutonium in the scar tissues of the lungs. Accordingly, an alternate model with scar-tissue compartments corresponding to larynx, bronchi, bronchioles, alveolar-interstitium and thoracic lymph nodes was proposed. The rates of transfer to the scar tissue compartments were determined using Markov Chain Monte Carlo analysis of data on urinary excretion, lung counts and post-mortem measurements of liver, skeleton and individual respiratory tract compartments, as available. The posterior models predicted that 20-100%-depending on the solubility of the material inhaled-of the activities retained in the respiratory tract were sequestered in the scar tissues.


Subject(s)
Occupational Exposure , Plutonium , Radiation Protection , Humans , Lung/chemistry , Occupational Exposure/analysis , Plutonium/analysis , United States
10.
J Radiol Prot ; 41(4)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34034246

ABSTRACT

Contaminated wounds are a common route of internal deposition of radionuclides for nuclear and radiation workers. They may result in significant doses to radiosensitive organs and tissues in an exposed individual's body. The United States Transuranium and Uranium Registries' whole-body donor (Case 0303) accidentally punctured his finger on equipment contaminated with plutonium nitrate. The wound was surgically excised and medically treated with intravenous injections of Ca-DTPA. A total of 16 g Ca-DTPA was administered in 18 treatments during the 2 months following the accident. Ninety-three urine samples were collected and analysed over 14 years following the accident. An estimated239Pu activity of 73.7 Bq was excreted during Ca-DTPA treatment. Post-mortem radiochemical analysis of autopsy tissues indicated that 40 years post-accident 21.6 ± 0.2 Bq of239Pu was retained in the skeleton, 12.2 ± 0.3 Bq in the liver, and 3.7 ± 0.1 Bq in other soft tissues; 1.35 ± 0.02 Bq of239Pu was measured in tissue samples from the wound site. To estimate the plutonium intake, late urine measurements, which were unaffected by chelation, and post-mortem radiochemical analysis results were evaluated using the IMBA Professional Plus software. The application of the National Council on Radiation Protection and Measurements wound model with an assumption of intake material as a predominantly strongly retained soluble plutonium compound with a small insoluble fraction adequately described the data (p= 0.46). The effective intake was estimated to be 50.2 Bq of plutonium nitrate and 1.5 Bq of the fragment. The prompt medical intervention with contaminated tissue excision and subsequent Ca-DTPA decorporation therapy reduced239Pu activity available for uptake and long-term retention in this individual's systemic organs by a factor of 38.


Subject(s)
Plutonium , Radiation Injuries , Follow-Up Studies , Humans , Models, Biological , Pentetic Acid , Plutonium/adverse effects , Plutonium/analysis , Punctures
11.
Health Phys ; 120(6): 661-670, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33675311

ABSTRACT

ABSTRACT: This whole-body tissue donor to the United States Transuranium and Uranium Registries was occupationally exposed to plutonium nitrate-dioxide mixture via chronic inhalation. This individual was involved in the Manhattan Project operations and later participated in medical follow-up studies. Soft tissues and bones collected at autopsy were analyzed for 238Pu, 239+240Pu, and 241Am. Fifty-three years post-intake, 700±2 Bq of 239+240Pu were still retained in the skeleton, 661±11 Bq in the liver, and 282±3 Bq in the respiratory tract. Bioassay measurements and organ activities at the time of death were used to estimate the intake and radiation doses using the TAURUS internal dosimetry software. For this individual, an ICRP Publication 130 Human Respiratory Tract Model with case-specific particle size of 0.3 µm, ICRP Publication 100 Human Alimentary Tract Model, and ICRP Publication 141 Plutonium Systemic Model adequately described long-term plutonium retention and excretion. The total cumulative 239+240Pu intake of 31,716 Bq was estimated, of which 24,853 Bq (78.4%) were contributed by inhalation of plutonium nitrate and 6,863 Bq (21.6%) of plutonium dioxide. The committed equivalent doses to the red bone marrow, bone surface, liver, lungs, and brain were 0.71 Sv, 6.5 Sv, 8.3 Sv, 3.8 Sv, and 0.068 Sv, respectively. The committed effective dose was 1.22 Sv.


Subject(s)
Occupational Exposure , Plutonium , Americium , Follow-Up Studies , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Plutonium/adverse effects , Plutonium/analysis
12.
Health Phys ; 120(3): 258-270, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32881734

ABSTRACT

ABSTRACT: Inhalation of plutonium is a significant contributor of occupational doses in plutonium production, nuclear fuel reprocessing, and cleanup operations. Accurate assessment of the residence time of plutonium in the lungs is important to properly characterize dose and, consequently, the risk from inhalation of plutonium aerosols. This paper discusses the long-term retention of plutonium in different parts of the respiratory tract of two workers who donated their bodies to the US Transuranium and Uranium Registries. The post-mortem tissue radiochemical analysis results, along with the urine bioassay data, were interpreted using Markov Chain Monte Carlo and the latest biokinetic models presented in the Occupational Intakes of Radionuclides series of ICRP publications. The materials inhaled by both workers were found to have solubility between that of plutonium nitrates and oxides. The long-term solubility was also confirmed by comparison of the activity concentration in the lungs and the thoracic lymph nodes. The data from the two individuals can be explained by assuming a bound fraction (fraction of plutonium deposited in the respiratory tract that becomes bound to lung tissue after dissolution) of 1% and 4%, respectively, without having to significantly alter the particle clearance parameters. Effects of different assumptions about the bound fraction on radiation doses to different target regions was also investigated. For inhalation of soluble materials, an assumption of fb of 1%, compared to the ICRP default of 0.2%, increases the dose to the most sensitive target region of the respiratory tract by 258% and that to the total lung by 116%. Some possible alternate methods of explaining higher-than-expected long-term retention of plutonium in the upper respiratory tract of these individuals-such as physical sequestration of material into the scar tissues and possible uptake by lungs-are also briefly discussed.


Subject(s)
Occupational Exposure , Plutonium , Respiratory System , Aerosols , Biological Assay , Humans , Occupational Exposure/statistics & numerical data , Plutonium/adverse effects , Plutonium/analysis , Respiratory System/chemistry
13.
J Radiol Prot ; 41(4)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-33186925

ABSTRACT

The U.S. Transuranium and Uranium Registries whole-body tissue donor Case 0407 had an acute intake of 'high-fired' plutonium oxide resulting from a glove-box fire in a fabrication plant at a nuclear defence facility. The respiratory tract of this individual was dissected into five regions (larynx, bronchi, bronchioles, alveolar-interstitial, and thoracic lymph nodes) and analysed for plutonium content. The activities in certain compartments of the respiratory tract were found to be higher than expected from the default models described in publications of the International Commission on Radiological Protection. Because of the extremely slow rate of dissolution of the material inhaled, the presence of bound fraction is incapable of explaining the higher-than-expected retention. A plausible hypothesis-encapsulation of plutonium in scar tissues-is supported by the review of literature. Therefore, scar-tissue compartments corresponding to the larynx, bronchi, bronchioles and alveolar-interstitial regions were added to the existing human respiratory tract model structure. The transfer rates between these compartments were determined using Markov Chain Monte Carlo analysis of data on urinary excretion, lung counts and post-mortem measurements of the liver, skeleton and regional retention in the respiratory tract. Modelling of the data showed that approximately 30% of plutonium activity in the lung was sequestered in scar tissues. The dose consequence of such sequestration is qualitatively compared against that of chemical binding.


Subject(s)
Occupational Exposure , Plutonium , Cicatrix , Humans , Lung/chemistry , Occupational Exposure/analysis , Oxides , Plutonium/analysis
15.
Health Phys ; 117(2): 202-210, 2019 08.
Article in English | MEDLINE | ID: mdl-31219902

ABSTRACT

The skeleton is one of the major retention sites for internally deposited actinides. Thus, an accurate estimation of the total skeleton content of these elements is important for biokinetic modeling and internal radiation dose assessment. Data from 18 whole-body donations to the US Transuranium and Uranium Registries with known plutonium intakes were used to develop a simple and reliable method for estimation of plutonium and Am activity in the total skeleton from single-bone analysis. A coefficient of deposition Kdep, defined as the ratio of actinide content in the patella to that in the skeleton, was calculated for Pu, Pu, and Am. No statistical difference was found in Kdep values among these radionuclides. Variability in Kdep values was investigated with relation to skeleton pathology (osteoporosis). The average Kdep of 0.0051 ± 0.0009 for the osteoporotic group was statistically different from Kdep of 0.0032 ± 0.0010 for nonosteoporotic individuals. The use of Kdep allows for rapid estimation of the total skeletal content of plutonium and Am with up to 35% uncertainty. To improve accuracy and precision of total skeleton activity estimates, regression analysis with power function was applied to the data. Strong correlation (r > 0.9) was found between Pu, Pu, and Am activities measured in the patella bone and total skeleton activity. The results of this study are specifically important for the optimization of bone sample collection for US Transuranium and Uranium Registries partial-body donations.


Subject(s)
Americium/analysis , Bone and Bones/metabolism , Occupational Diseases/metabolism , Occupational Exposure/analysis , Osteoporosis/metabolism , Plutonium/analysis , Aged , Aged, 80 and over , Americium/poisoning , Bone and Bones/radiation effects , Case-Control Studies , Humans , Male , Occupational Diseases/etiology , Occupational Diseases/pathology , Occupational Exposure/adverse effects , Osteoporosis/etiology , Osteoporosis/pathology , Plutonium/poisoning , Tissue Donors
16.
Radiat Environ Biophys ; 58(2): 227-235, 2019 05.
Article in English | MEDLINE | ID: mdl-30627772

ABSTRACT

A recently proposed system of models for plutonium decorporation (SPD) was developed using data from an individual occupationally exposed to plutonium via a wound [from United States Transuranium and Uranium Registries (USTUR) Case 0212]. The present study evaluated the SPD using chelation treatment data, urine measurements, and post-mortem plutonium activities in the skeleton and liver from USTUR Case 0269. This individual was occupationally exposed to moderately soluble plutonium via inhalation and extensively treated with chelating agents. The SPD was linked to the International Commission on Radiological Protection (ICRP) Publication 66 Human Respiratory Tract Model (HRTM) and the ICRP Publication 30 Gastrointestinal Tract model to evaluate the goodness-of-fit to the urinary excretion data and the predictions of post-mortem plutonium retention in the skeleton and liver. The goodness-of-fit was also evaluated when the SPD was linked to the ICRP Publication 130 HRTM and the ICRP Publication 100 Human Alimentary Tract Model. The present study showed that the proposed SPD was useful for fitting the entire, chelation-affected and non-affected, urine bioassay data, and for predicting the post-mortem plutonium retention in the skeleton and liver at time of death, 38.5 years after the accident. The results of this work are consistent with the conclusion that Ca-EDTA is less effective than Ca-DTPA for enhancing urinary excretion of plutonium.


Subject(s)
Air Pollutants, Radioactive/urine , Chelating Agents/therapeutic use , Edetic Acid/therapeutic use , Inhalation Exposure , Models, Biological , Pentetic Acid/therapeutic use , Plutonium/urine , Radiation Injuries/prevention & control , Air Pollutants, Radioactive/pharmacokinetics , Bone and Bones/metabolism , Gastrointestinal Tract/metabolism , Humans , Liver/metabolism , Occupational Exposure , Plutonium/pharmacokinetics , Respiratory System/metabolism
17.
Health Phys ; 117(2): 156-167, 2019 08.
Article in English | MEDLINE | ID: mdl-29750674

ABSTRACT

A voluntary partial-body donor (US Transuranium and Uranium Registries case 0785) was accidentally exposed to Pu via inhalation and wounds. This individual underwent medical treatment including wound excision and extensive chelation treatment with calcium ethylenediaminetetraacetic acid and calcium diethylenetriaminepentaacetic acid. Approximately 2.2 kBq of Pu was measured in the wound site 44 y after the accident. Major soft tissues and selected bones were collected at autopsy and radiochemically analyzed for Pu, Pu, and Am. Postmortem systemic retention of Pu, Pu, and Am was estimated to be 32.0 ± 1.4 Bq, 2,172 ± 70 Bq, and 394 ± 15 Bq, respectively. Approximately 3% of Pu whole-body activity was still retained in the lungs 51 y after the accident indicating exposure to insoluble plutonium material. To estimate the intake and calculate radiation dose, urine measurements not affected by chelation treatment, in vivo chest counts, and postmortem radiochemical analysis data were simultaneously fitted using Integrated Modules for Bioassay Analysis Professional Plus software. The currently recommended International Commission on Radiological Protection Publication 130 human respiratory tract model and National Council on Radiation Protection and Measurements Report 156 wound model were used with default parameters. The intake, adjusted for Pu removed by chelation treatment, was estimated at approximately 79.5 kBq with 68% resulting from inhalation and 32% from the wound. Inhaled plutonium was predominantly insoluble type S material (74%) with insoluble plutonium fragments deposited in the wound. Only 1.3% reduction in radiation dose was achieved by chelation treatment. The committed effective dose was calculated to be 1.49 Sv. Using urine data available for this case, the effect of chelation therapy was evaluated. Urinary excretion enhancement factors were calculated as 83 ± 52 and 38 ± 17 for initial and delayed calcium ethylenediaminetetraacetic acid treatments, respectively, and as 18 ± 5 for delayed calcium diethylenetriaminepentaacetic acid. The enhancement factor decreases proportionally to an inverse cubic root of time after intake. For delayed calcium ethylenediaminetetraacetic acid treatment, with five consecutive daily administrations, the enhancement factor increased from day 1 to 4, followed by approximately a 50% drop on day 5. The half-time of plutonium ethylenediaminetetraacetic acid complex removal in urine was evaluated to be 1.4 d.


Subject(s)
Chelating Agents/therapeutic use , Occupational Exposure/adverse effects , Plutonium/analysis , Plutonium/poisoning , Radiation Injuries/drug therapy , Wounds, Penetrating/drug therapy , Aged , Chelation Therapy , Humans , Male , Radiation Dosage , Radiation Injuries/etiology , Tissue Donors , Wounds, Penetrating/etiology
18.
Health Phys ; 117(2): 149-155, 2019 08.
Article in English | MEDLINE | ID: mdl-29781839

ABSTRACT

The reference value for the skeleton weight of an adult male (10.5 kg) recommended by the International Commission on Radiological Protection in Publication 70 is based on weights of dissected skeletons from 44 individuals, including two US Transuranium and Uranium Registries whole-body donors. The International Commission on Radiological Protection analysis of anatomical data from 31 individuals with known values of body height demonstrated significant correlation between skeleton weight and body height. The corresponding regression equation, Wskel (kg) = -10.7 + 0.119 × H (cm), published in International Commission on Radiological Protection Publication 70 is typically used to estimate the skeleton weight from body height. Currently, the US Transuranium and Uranium Registries holds data on individual bone weights from a total of 40 male whole-body donors, which has provided a unique opportunity to update the International Commission on Radiological Protection skeleton weight vs. body height equation. The original International Commission on Radiological Protection Publication 70 and the new US Transuranium and Uranium Registries data were combined in a set of 69 data points representing a group of 33- to 95-y-old individuals with body heights and skeleton weights ranging from 155 to 188 cm and 6.5 to 13.4 kg, respectively. Data were fitted with a linear least-squares regression. A significant correlation between the two parameters was observed (r = 0.28), and an updated skeleton weight vs. body height equation was derived: Wskel (kg) = -6.5 + 0.093 × H (cm). In addition, a correlation of skeleton weight with multiple variables including body height, body weight, and age was evaluated using multiple regression analysis, and a corresponding fit equation was derived: Wskel (kg) = -0.25 + 0.046 × H (cm) + 0.036 × Wbody (kg) - 0.012 × A (y). These equations will be used to estimate skeleton weights and, ultimately, total skeletal actinide activities for biokinetic modeling of US Transuranium and Uranium Registries partial-body donation cases.


Subject(s)
Body Height/radiation effects , Body Weight/radiation effects , Models, Biological , Radiation Monitoring/methods , Tissue Donors , Uranium/analysis , Adult , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Radiation Dosage , Reference Values , Tissue Distribution , Uranium/pharmacokinetics
19.
Health Phys ; 117(2): 168-178, 2019 08.
Article in English | MEDLINE | ID: mdl-30489383

ABSTRACT

Decorporation therapy with salts of diethylenetriamine-pentaacetic acid binds actinides, thereby limiting uptake to organs and enhancing the rate at which actinides are excreted in urine. International Commission on Radiological Protection reference biokinetic models cannot be used to fit this enhanced exertion simultaneously with the baseline actinide excretion rate that is observed prior to the start of therapy and/or after the effects of therapy have ceased. In this study, the Coordinated Network on Radiation Dosimetry approach, which was initially developed for modeling decorporation of plutonium, was applied to model decorporation of americium using data from a former radiation worker who agreed to donate his body to the US Transuranium and Uranium Registries for research. This individual was exposed to airborne Am, resulting in a total-body activity of 66.6 kBq. He was treated with calcium-diethylenetriamine-pentaacetic acid for 7 y. The time and duration of intakes are unknown as no incident reports are available. Modeling of different assumptions showed that an acute intake of 5-µm activity median aerodynamic diameter type M aerosols provides the most reasonable description of the available pretherapeutic data; however, the observed Am activity in the lungs at the time of death was higher than the one predicted for type M material. The Coordinated Network on Radiation Dosimetry approach for decorporation modeling was used to model the in vivo chelation process directly. It was found that the Coordinated Network on Radiation Dosimetry approach, which only considered chelation in blood and extracellular fluids, underestimated the urinary excretion of Am during diethylenetriamine-pentaacetic acid treatment; therefore, the approach was extended to include chelation in the liver. Both urinary excretion and whole-body retention could be described when it was assumed that 25% of chelation occurred in the liver, 75% occurred in the blood and ST0 compartment, and the chelation rate constant was 1 × 10 pmol d. It was observed that enhancement of urinary excretion of Am after injection of diethylenetriamine-pentaacetic acid exponentially decreased to the baseline level with an average half-time of 2.2 ± 0.7 d.


Subject(s)
Americium/analysis , Americium/poisoning , Chelating Agents/therapeutic use , Decontamination/methods , Models, Biological , Occupational Exposure/adverse effects , Radiation Injuries/drug therapy , Chelation Therapy , Humans , Kinetics , Male , Radiation Dosage , Radiation Injuries/etiology , Radiation Protection , Radiometry , Tissue Donors
20.
Radiat Res ; 191(2): 201-210, 2019 02.
Article in English | MEDLINE | ID: mdl-30566387

ABSTRACT

Individuals with significant intakes of plutonium (Pu) are typically treated with chelating agents, such as the trisodium salt form of calcium diethylenetriaminepentaacetate (CaNa3-DTPA, referred to hereafter as Ca-DTPA). Currently, there is no recommended approach for simultaneously modeling plutonium biokinetics during and after chelation therapy. In this study, an improved modeling system for plutonium decorporation was developed. The system comprises three individual model structures describing, separately, the distinct biokinetic behaviors of systemic plutonium, intravenously injected Ca-DTPA and in vivo-formed Pu-DTPA chelate. The system was linked to ICRP Publication 100, "Human Alimentary Tract Model for Radiological Protection" and NCRP Report 156, Development of a Biokinetic Model for Radionuclide-Contaminated Wounds and Procedures for Their Assessment, Dosimetry and Treatment." Urine bioassay and chelation treatment data from an occupationally-exposed individual were used for model development. Chelation was assumed to occur in the blood, soft tissues, liver and skeleton. The coordinated network for radiation dosimetry approach to decorporation modeling was applied using a chelation constant describing the secondorder, time-dependent kinetics of the in vivo chelation reaction. When using the proposed system of models for plutonium decorporation, a significant improvement of the goodness-of-fit to the urinary excretion data was observed and more accurate predictions of postmortem plutonium retention in the skeleton, liver and wound site were achieved.


Subject(s)
Chelating Agents/chemistry , Models, Chemical , Pentetic Acid/chemistry , Plutonium/chemistry , Biological Assay , Chelating Agents/administration & dosage , Chelating Agents/pharmacokinetics , Humans , Models, Biological , Occupational Exposure , Pentetic Acid/administration & dosage , Pentetic Acid/pharmacokinetics , Plutonium/pharmacokinetics , Plutonium/urine , Postmortem Changes , Radiation Dosage , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL