Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
J Cancer Res Clin Oncol ; 150(1): 24, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252319

ABSTRACT

PURPOSE: Resistin is an inflammatory cytokine secreted mostly by adipocytes and immune cells that plays a role in the development of insulin resistance, diabetes, and cancer. We hypothesized that resistin's inflammatory activity influences the free radical and oxidative stress pathways. METHODS: We used human breast carcinogenic (MCF-7 and MDA-MB-231) and non-carcinogenic (MCF-10A) cells in this investigation and correlated the absorbed resistin concentration with the change in oxidative stress (TBARS, carbonated proteins) and antioxidant activity (Antioxidant Capacity, SuperOxideDismutase, CATalase, Glutathione Peroxidase). RESULTS: Resistin was substantially more effective as a prooxidant at lower (12.5 ng/ml) concentrations, than at higher concentrations (25.0 ng/ml). Vitamin C did not appear to be an effective oxidative stress protector at antioxidant concentrations of 5.10-4 M. Leptin, at 100 ng/ml, did not result in conclusive oxidative stress or antioxidant defence stimulation, as expected. CONCLUSION: Taken together, the findings support resistin's role as a non-oxidative stress marker and a metabolic signaling molecule.


Subject(s)
Antioxidants , Breast Neoplasms , Humans , Female , Antioxidants/pharmacology , Resistin , Oxidation-Reduction , Oxidative Stress
2.
Pathogens ; 12(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38133287

ABSTRACT

A growing body of evidence has demonstrated a relationship between the microbiome, adiposity, and cancer development. The microbiome is emerging as an important factor in metabolic disease and cancer pathogenesis. This review aimed to highlight the role of the microbiome in obesity and its association with cancer, with a particular focus on breast cancer. This review discusses how microbiota dysbiosis may contribute to obesity and obesity-related diseases, which are linked to breast cancer. It also explores the potential of the gut microbiome to influence systemic immunity, leading to carcinogenesis via the modulation of immune function. This review underscores the potential use of the microbiome profile as a diagnostic tool and treatment target, with strategies including probiotics, fecal microbiota transplantation, and dietary interventions. However, this emphasizes the need for more research to fully understand the complex relationship between the microbiome, metabolic disorders, and breast cancer. Future studies should focus on elucidating the mechanisms underlying the impact of the microbiome on breast cancer and exploring the potential of the microbiota profile as a biomarker and treatment target.

3.
Cancers (Basel) ; 15(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38001739

ABSTRACT

EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.

4.
Adipocyte ; 12(1): 2248673, 2023 12.
Article in English | MEDLINE | ID: mdl-37599422

ABSTRACT

Technologies are transforming the understanding of adipose tissue as a complex and dynamic tissue that plays a critical role in energy homoeostasis and metabolic health. This mini-review provides a brief overview of the potential impact of novel technologies in biomedical research and aims to identify areas where these technologies can make the most significant contribution to adipose tissue research. It discusses the impact of cutting-edge technologies such as single-cell sequencing, multi-omics analyses, spatial transcriptomics, live imaging, 3D tissue engineering, microbiome analysis, in vivo imaging, and artificial intelligence/machine learning. As these technologies continue to evolve, we can expect them to play an increasingly important role in advancing our understanding of adipose tissue and improving the treatment of related diseases.


Subject(s)
Adipose Tissue , Artificial Intelligence , Gene Expression Profiling , Homeostasis , Multiomics
5.
Molecules ; 28(9)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37175144

ABSTRACT

Tetrahydrocurcumin (THC) is a metabolite of curcumin (CUR). It shares many of CUR's beneficial biological activities in addition to being more water-soluble, chemically stable, and bioavailable compared to CUR. However, its mechanisms of action have not been fully elucidated. This paper addresses the preventive role of THC on various brain dysfunctions as well as its effects on brain redox processes, traumatic brain injury, ischemia-reperfusion injury, Alzheimer's disease, and Parkinson's disease in various animal or cell culture models. In addition to its strong antioxidant properties, the effects of THC on the reduction of amyloid ß aggregates are also well documented. The therapeutic potential of THC to treat patterns of mitochondrial brain dysmorphic dysfunction is also addressed and thoroughly reviewed, as is evidence from experimental studies about the mechanism of mitochondrial failure during cerebral ischemia/reperfusion injury. THC treatment also results in a dose-dependent decrease in ERK-mediated phosphorylation of GRASP65, which prevents further compartmentalization of the Golgi apparatus. The PI3K/AKT signaling pathway is possibly the most involved mechanism in the anti-apoptotic effect of THC. Overall, studies in various animal models of different brain disorders suggest that THC can be used as a dietary supplement to protect against traumatic brain injury and even improve brain function in Alzheimer's and Parkinson's diseases. We suggest further preclinical studies be conducted to demonstrate the brain-protective, anti-amyloid, and anti-Parkinson effects of THC. Application of the methods used in the currently reviewed studies would be useful and should help define doses and methods of THC administration in different disease conditions.


Subject(s)
Brain Injuries, Traumatic , Curcumin , Animals , Amyloid beta-Peptides , Phosphatidylinositol 3-Kinases , Brain , Curcumin/chemistry
6.
Antioxidants (Basel) ; 12(5)2023 May 19.
Article in English | MEDLINE | ID: mdl-37237992

ABSTRACT

This review is focused on the mechanisms that regulate health, disease and aging redox status, the signal pathways that counteract oxidative and reductive stress, the role of food components and additives with antioxidant properties (curcumin, polyphenols, vitamins, carotenoids, flavonoids, etc.), and the role of the hormones irisin and melatonin in the redox homeostasis of animal and human cells. The correlations between the deviation from optimal redox conditions and inflammation, allergic, aging and autoimmune responses are discussed. Special attention is given to the vascular system, kidney, liver and brain oxidative stress processes. The role of hydrogen peroxide as an intracellular and paracrine signal molecule is also reviewed. The cyanotoxins ß-N-methylamino-l-alanine (BMAA), cylindrospermopsin, microcystins and nodularins are introduced as potentially dangerous food and environment pro-oxidants.

7.
Metabol Open ; 17: 100230, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36686605

ABSTRACT

Reproduction and energy metabolism are closely related, and fertility can be directly affected by either obesity or malnutrition. In this study, we investigated the in vitro effects of irisin and leptin, two hormones primarily involved in energy metabolism, on the expression of genes encoding key steroidogenic enzymes in primary cultures of human granulosa cells. Granulosa cells were purified from follicular fluid samples obtained during in vitro fertilization (IVF) procedure, cultured, and treated with irisin (125-2000 ng/ml) or leptin (25-400 ng/ml) for 1-3 days. mRNA expression levels of cytochrome P450 enzymes [CYP11A1, CYP19A1, CYP21A2], hydroxy-delta-5-steroid dehydrogenase, 3 beta and steroid delta-isomerase 1 (HSD3B1), and hydroxysteroid 17-beta dehydrogenase 3 (HSD17B3) were measured using qRT-PCR analysis. Irisin significantly upregulated CYP19A1 mRNA levels, while leptin upregulated CYP19A1 and HSD3B1 mRNA levels. These preliminary results show that irisin and leptin may directly affect the expression of the genes important for ovarian steroidogenesis and female reproduction.

8.
Mol Med ; 28(1): 129, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316651

ABSTRACT

Curcumin is a polyphenolic compound derived from turmeric that has potential beneficial properties for cardiovascular and renal diseases and is relatively safe and inexpensive. However, the application of curcumin is rather problematic due to its chemical instability and low bioavailability. The experimental results showed improved chemical stability and potent pharmacokinetics of one of its analogs - (2E,6E)-2,6-bis[(2-trifluoromethyl)benzylidene]cyclohexanone (C66). There are several advantages of C66, like its synthetic accessibility, structural simplicity, improved chemical stability (in vitro and in vivo), presence of two reactive electrophilic centers, and good electron-accepting capacity. Considering these characteristics, we reviewed the literature on the application of C66 in resolving diabetes-associated cardiovascular and renal complications in animal models. We also summarized the mechanisms by which C66 is preventing the release of pro-oxidative and pro-inflammatory molecules in the priming and in activation stage of cardiomyopathy, renal fibrosis, and diabetic nephropathy. The cardiovascular protective effect of C66 against diabetes-induced oxidative damage is Nrf2 mediated but mainly dependent on JNK2. In general, C66 causes inhibition of JNK2, which reduces cardiac inflammation, fibrosis, oxidative stress, and apoptosis in the settings of diabetic cardiomyopathy. C66 exerts a powerful antifibrotic effect by reducing inflammation-related factors (MCP-1, NF-κB, TNF-α, IL-1ß, COX-2, and CAV-1) and inducing the expression of anti-inflammatory factors (HO-1 and NEDD4), as well as targeting TGF-ß/SMADs, MAPK/ERK, and PPAR-γ pathways in animal models of diabetic nephropathy. Based on the available evidence, C66 is becoming a promising drug candidate for improving cardiovascular and renal health.


Subject(s)
Curcumin , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Kidney/metabolism , Fibrosis , Oxidative Stress , Inflammation/metabolism
9.
Life (Basel) ; 12(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36362863

ABSTRACT

In this review, the basic metabolic characteristics of the curcuminoid tetrahydrocurcumin (THC) at the level of the intestinal microbiota were addressed. Special attention was given to the bactericidal effects of one of the THC-phospholipid formulations, which has shown greater bioavailability and activity than pure THC. Similarly, quinoline derivatives and amino acid conjugates of THC have also shown antibacterial effects in the gut. The microbial effect of pure THC is particularly pronounced in pathophysiological conditions related to the function of the intestinal microbiota, such as type II diabetes. Furthermore, the antiviral characteristics of Cur compared to those of THC are more pronounced in preventing the influenza virus. In the case of HIV infections, the new microemulsion gel formulations of THC possess high retention during preventive application in the vagina and, at the same time, do not disturb the vaginal microbiota, which is critical in maintaining low vaginal pH. Based on the reviewed literature, finding new formulations of THC which can increase its bioavailability and activity and emphasize its antibacterial and antiviral characteristics could be very important. Applying such THC formulations in preventing and treating ailments related to the microbiotic compartments in the body would be beneficial from a medical point of view.

10.
Life (Basel) ; 12(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36294901

ABSTRACT

This study aimed to evaluate the cardioprotective effects of L-2-oxothiazolidine-4-carboxylate (OTC) against isoproterenol (ISO)-induced acute myocardial infarction (MI) in rats. Results demonstrated that OTC treatments inhibited ISO-induced oxidative damage, suppressed lipid peroxidation, and increased superoxide dismutase and catalase activity in the hearts of the treated rats compared to those of the untreated controls. The ISO-related NF-κB activation was reduced due to the OTC treatment, and lower degrees of inflammatory cell infiltration and necrosis in the hearts were observed. In summary, OTC treatments exerted cardioprotective effects against MI in vivo, mainly due to enhancing cardiac antioxidant activity.

11.
Molecules ; 27(16)2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36014335

ABSTRACT

Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling. The effects of THC on angiogenesis in CaSki xenografted mice and the expression of vascular endothelial growth factor (VEGF) are well documented. On the other hand, as an anti-inflammatory and antioxidant compound, THC is involved in enhancing homocysteine-induced mitochondrial remodeling in brain endothelial cells. The experimental evidence regarding the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion injury and the therapeutic potential of THC to alleviate mitochondrial cerebral dysmorphic dysfunction patterns is also scrutinized and explored. Overall, the studies on different animal models of disease suggest that THC can be used as a dietary supplement to protect against cardiovascular changes caused by various factors (such as heavy metal overload, oxidative stress, and carcinogenesis). Additionally, the reviewed literature data seem to confirm THC's potential to improve mitochondrial dysfunction in cerebral vasculature during ischemic stroke through epigenetic mechanisms. We suggest that further preclinical studies should be implemented to demonstrate THC's vascular-protective, antiangiogenic, and anti-tumorigenic effects in humans. Applying the methods used in the presently reviewed studies would be useful and will help define the doses and methods of THC administration in various disease settings.


Subject(s)
Endothelial Cells , Hypertension , Animals , Humans , Mice , Curcumin/analogs & derivatives , Disease Models, Animal , Hypertension/drug therapy , Vascular Endothelial Growth Factor A
12.
Data Brief ; 40: 107781, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35028351

ABSTRACT

Reproduction is closely related to energy metabolism: physical activity and adiposity (either insufficient weight or obesity) can affect female fertility. Irisin is a myo- and adipokine produced by skeletal muscles during exercise or shivering as well as in smaller amounts by subcutaneous visceral adipocytes [1]. Leptin is a neuroendocrine adipokine regulating satiety and energy expenditure. Circulating levels of both, irisin and leptin, correlate with adiposity status and physical activity [2], [3], [4], [5], [6]. This article presents data from quantitative PCR array of the in vitro effects of irisin and leptin on cultured human ovarian granulosa cells. Granulosa cells were purified from follicular fluid samples obtained from women undergoing in vitro fertilization (IVF) procedure and were subjected to treatment with irisin (500 ng/mL) or leptin (100 ng/mL) for 24 h. The array included 84 genes involved in female fertility.

13.
NPJ Breast Cancer ; 7(1): 105, 2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34389732

ABSTRACT

Obese women with hormone receptor-positive breast cancer exhibit poor response to therapy and inferior outcomes. However, the underlying molecular mechanisms by which obesity/hyperleptinemia may reduce the efficacy of hormonal therapy remain elusive. Obese mice with hyperleptinemia exhibit increased tumor progression and respond poorly to tamoxifen compared to non-obese mice. Exogenous leptin abrogates tamoxifen-mediated growth inhibition and potentiates breast tumor growth even in the presence of tamoxifen. Mechanistically, leptin induces nuclear translocation of phosphorylated-ER and increases the expression of ER-responsive genes, while reducing tamoxifen-mediated gene repression by abrogating tamoxifen-induced recruitment of corepressors NCoR, SMRT, and Mi2 and potentiating coactivator binding. Furthermore, in silico analysis revealed that coactivator Med1 potentially associates with 48 (out of 74) obesity-signature genes. Interestingly, leptin upregulates Med1 expression by decreasing miR-205, and increases its functional activation via phosphorylation, which is mediated by activation of Her2 and EGFR. It is important to note that Med1 silencing abrogates the negative effects of leptin on tamoxifen efficacy. In addition, honokiol or adiponectin treatment effectively inhibits leptin-induced Med1 expression and improves tamoxifen efficacy in hyperleptinemic state. These studies uncover the mechanistic insights how obese/hyperleptinemic state may contribute to poor response to tamoxifen implicating leptin-miR205-Med1 and leptin-Her2-EGFR-Med1 axes, and present bioactive compound honokiol and adipocytokine adiponectin as agents that can block leptin's negative effect on tamoxifen.

14.
Metabol Open ; 7: 100050, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32924001

ABSTRACT

BACKGROUND: The association between coronary artery disease (CAD) and diabetes mellitus (DM) is strong but the physiologic mechanisms responsible for this association remain unclear. Patients with DM exhibit high circulating levels of glycated proteins and lipoproteins called advanced glycation end products (AGEs) which have been implicated in the development of oxidative damage to vascular endothelium. We examined the relationships between the presence and extent of CAD and AGEs in patients undergoing elective coronary artery catheterization in an urban teaching hospital. METHODS: Patients with possible CAD (n = 364) were recruited prior to elective cardiac catheterization (52% male, 48% diabetic). Regression and correlation analyses were used to examine the relationship between serum AGE concentrations, soluble AGE receptor (sRAGE) concentration, HbA1c, LDL and the presence of obstructive CAD along with the burden of CAD measured by SYNTAX and SYNTAX II scores. RESULTS: AGE and sRAGE levels did not significantly correlate with any of the studied coronary artery disease parameters. HbA1c showed positive correlation with both SYNTAX and SYNTAX II scores in patients with and without diabetes. CONCLUSION: In this cross-sectional study of patients with possible CAD, serum AGEs and sRAGE concentrations did not correlate with SYNTAX or SYNTAX II scores regardless of diabetic status. HbA1C correlated positively with the SYNTAX and SYNTAX II scores in both diabetic and non-diabetic populations.

15.
Data Brief ; 28: 104798, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31828190

ABSTRACT

Metastatic breast cancer is the most advanced stage of breast cancer and the leading cause of breast cancer mortality. Although understanding of the cancer progression and metastasis process has improved, the bi-directional communication between the tumor cell and the tumor microenvironment is still not well understood. Breast cancer cells are highly secretory, and their secretory activity is modulated by a variety of inflammatory stimuli present in the tumor microenvironment. Here, we characterized the cytokine expression in human breast cancer cells (MDA-MB-231, MCF-7, T-47D, and BT-474) in vitro using 41 cytokine MILLIPLEX assay. Further, we compared cytokine expression in breast cancer cells to those in non-tumorigenic human breast epithelial MCF-10A cells.

16.
Data Brief ; 25: 104118, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31417946

ABSTRACT

Resistin is an adipokine produced by the white adipocytes and adipose-derived macrophages, which mediates inflammation and insulin resistance Huang et al., 1997 and Renehan et al., 2008 Feb. Here, we provide data on the effect of resistin on epithelial to mesenchymal transition (EMT) in breast cancer cells in vitro. As model systems, we used human MCF-7 (low-metastatic) and MDA-MB-231 (high-metastatic) breast cancer cell lines. To optimize experimental conditions, we treated the cells with various concentrations of resistin (12.5, 25 and 50 ng/ml) for different time intervals (6 and 24 hours), and measured SOCS3 mRNA expression by using qRT-PCR analysis. Further, we used qRT-PCR and Western blot analyses to measure the expression of various epithelial (E-cadherin, claudin-1) and mesenchymal (SNAIL, SLUG, ZEB1, TWIST1, fibronectin, and vimentin) markers after resistin treatment. This data article is part of a study Avtanski et al., 2019 May, where detailed interpretation and discussion can be found.

17.
Data Brief ; 25: 104112, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31294061

ABSTRACT

Resistin is an adipokine produced in white adipose tissue that is thought to modulate insulin sensitivity in peripheral tissues (such as liver, skeletal muscle or adipose tissue). Human and murine resistin molecules share only about 60% sequence homology. [1] Contrary to humans, in which resistin is secreted mostly by macrophages, Park and Ahima 2013 resistin in rodents is produced primarily by the mature adipocytes of the white adipose tissue. Although resistin can bind to toll-like receptor 4 (TLF4) activating proinflammatory responses in human and rodents, [3], [4], [5], [6], [7], [8] the inflammatory actions of resistin in human monocytes were found to be mediated by resistin binding to adenylyl cyclase-associated protein 1 (CAP1). [9] In this study, we aimed to investigate the in vitro effects of resistin on the expression of various genes related to insulin resistance in mouse liver cells. Using BNL CL.2 cells, we investigated the effect of resistin in untransfected or CAP1 siRNA-transfected cells on the expression of 84 key genes involved in insulin resistance.

18.
Cytokine ; 120: 155-164, 2019 08.
Article in English | MEDLINE | ID: mdl-31085453

ABSTRACT

Breast cancer incidence and metastasis in postmenopausal women are known to associate with obesity, but the molecular mechanisms behind this association are largely unknown. We investigated the effect of adipokine resistin on epithelial to mesenchymal transition (EMT) and stemness in breast cancer cells in vitro. Previous reports demonstrated that the inflammatory actions of resistin are mediated by the adenylyl cyclase-associated protein 1 (CAP1), which serves as its receptor. As a model for our study, we used MCF-7 and MDA-MB-231 breast cancer and MCF-10A breast epithelial cells. We showed that in MCF-7 cells resistin increases the migration of MCF-7 and MDA-MB-231 cells and induces the formation of cellular protrusions through reorganization of F-actin filaments. Resistin upregulated the expression of mesenchymal markers involved in EMT (SNAIL, SLUG, ZEB1, TWIST1, fibronectin, and vimentin), and downregulated those of epithelial markers (E-cadherin and claudin-1). Resistin also potentiated the nuclear translocation of SNAIL protein, indicating initiation of EMT reprogramming. We further induced EMT in non-carcinogenic breast epithelial MCF-10A cells demonstrating that the effects of resistin on EMT were not breast cancer cell specific. In order to assess whether resistin-induced EMT depends on CAP1, we used siRNA approach to silence CAP1 gene in MCF-7 cells. Results demonstrated that when CAP1 was silenced, the induction of SNAIL, ZEB1 and vimentin expression by resistin as well as SNAIL and ZEB1 nuclear translocation, were abolished. Additionally, CAP1 silencing resulted in a suppression of MCF-7 cells migration. We performed quantitative PCR array profiling the expression of 84 genes related to cancer stem cells (CSC), pluripotency and metastasis and selected a set of genes (ALDH1A1, ITGA4, LIN28B, SMO, KLF17, PTPRC, PROM1, SIRT1, and PECAM1) that were modulated by resistin. Further experiments demonstrated that the effect of resistin on the expression of some of these genes (PROM1, PTPRC, KLF17, SIRT1, and PECAM1) was also dependent on CAP1. Our results demonstrate that resistin promotes the metastatic potential of breast cancer cells by inducing EMT and stemness and some of these effects are mediated by CAP1.


Subject(s)
Breast Neoplasms/pathology , Cell Cycle Proteins/metabolism , Cell Movement/drug effects , Cytoskeletal Proteins/metabolism , Epithelial-Mesenchymal Transition/drug effects , Neoplastic Stem Cells/pathology , Resistin/pharmacology , Cell Line, Tumor , Cellular Reprogramming/drug effects , Female , Humans , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism
19.
Animal Model Exp Med ; 2(4): 252-258, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31942557

ABSTRACT

BACKGROUND: Animal models of diet-induced obesity (DIO) are commonly used in medical research for mimicking human diseases. There is no universal animal model, and careful evaluation of variety of factors needs to be considered when designing new experiments. Here, we investigated the effect of 9 weeks high-fat diet (HFD) intervention, providing 60% energy from fat, on parameters of inflammation and insulin resistance in male C57BL/6J mice. METHODS: Six weeks old mice were initiated on regular diet (RD) or HFD providing 60 kcal energy from fat for 9 weeks. Fasting blood glucose levels were measured by glucometer, and fasting plasma levels of insulin and proinflammatory cytokines by Luminex assay. Insulin sensitivity was evaluated by using QUICKI and HOMA2 indexes. RESULTS: HFD mice showed ~ 40% higher body weight and ~ 20% larger abdominal circumference, due to an increase in the white adipose tissue mass. Liver examination revealed increased size and higher hepatic lipid accumulation in livers from HFD mice compared to their RD counterparts. Animals from the HFD group were characterized with significantly higher presence of crown-like structures (CLS) in WAT and higher plasma levels of proinflammatory cytokines (TNF-α, IL-6, leptin, MCP-1, PAI-1, and resistin). HFD-fed mice also demonstrated impaired insulin sensitivity (lower QUICKI, higher HOMA-insulin resistance (HOMA-IR), and lower HOMA-percent sensitivity (HOMA-%S)) index values. CONCLUSION: Male C57BL/6J mice on 9 weeks HFD providing 60 kcal energy from fat display impaired insulin sensitivity and chronic inflammation, thus making this DIO mouse model appropriate for studies of early stages of obesity-related pathology.

20.
Mol Med ; 24(1): 29, 2018 06 05.
Article in English | MEDLINE | ID: mdl-30134816

ABSTRACT

Breast cancer is the most common cancer among women as metastasis is currently the main cause of mortality. Breast cancer cells undergoing metastasis acquire resistance to death signals and increase of cellular motility and invasiveness.Plants are rich in polyphenolic compounds, many of them with known medicinal effects. Various phyto-polyphenols have also been demonstrated to suppress cancer growth. Their mechanism of action is usually pleiotropic as they target multiple signaling pathways regulating key cellular processes such as proliferation, apoptosis and differentiation. Importantly, some phyto- polyphenols show low level of toxicity to untransformed cells, but selective suppressing effects on cancer cells proliferation and differentiation.In this review, we summarize the current information about the mechanism of action of some phyto-polyphenols that have demonstrated anti-carcinogenic activities in vitro and in vivo. Gained knowledge of how these natural polyphenolic compounds work can give us a clue for the development of novel anti-metastatic agents.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/drug therapy , Polyphenols/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Breast Neoplasms/pathology , Humans , Phytotherapy , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...