Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Measurement (Lond) ; 201: 111702, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35942188

ABSTRACT

The COVID-19 pandemic spread all over the world, starting in China in late 2019, and significantly affected life in all aspects. As seen in SARS, MERS, COVID-19 outbreaks, coronaviruses pose a great threat to world health. The COVID-19 epidemic, which caused pandemics all over the world, continues to seriously threaten people's lives. Due to the rapid spread of COVID-19, many countries' healthcare sectors were caught off guard. This situation put a burden on doctors and healthcare professionals that they could not handle. All of the studies on COVID-19 in the literature have been done to help experts to recognize COVID-19 more accurately, to use more accurate diagnosis and appropriate treatment methods. The alleviation of this workload will be possible by developing computer aided early and accurate diagnosis systems with machine learning. Diagnosis and evaluation of pneumonia on computed tomography images provide significant benefits in investigating possible complications and in case follow-up. Pneumonia and lesions occurring in the lungs should be carefully examined as it helps in the diagnostic process during the pandemic period. For this reason, the first diagnosis and medications are very important to prevent the disease from progressing. In this study, a dataset consisting of Pneumonia and Normal images was used by proposing a new image preprocessing process. These preprocessed images were reduced to 15x15 unit size and their features were extracted according to their RGB values. Experimental studies were carried out by performing both normal values and feature reduction among these features. RGB values of the images were used in train and test processes for MLAs. In experimental studies, 5 different Machine Learning Algorithms (MLAs) (Multi Class Support Vector Machine (MC-SVM), k Nearest Neighbor (k-NN), Decision Tree (DT), Multinominal Logistic Regression (MLR), Naive Bayes (NB)). The following accuracy rates were obtained in train operations for MLAs, respectively; 1, 1, 1, 0.746377, 0.963768. Accuracy results in test operations were obtained as follows; 0.87755, 0.857143, 0.857143, 0.877551, 0.938776.

2.
Biomed Signal Process Control ; 77: 103836, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35663432

ABSTRACT

Pandemics and many other diseases threaten human life, health and quality of life by affecting many aspects. For this reason, the medical diagnosis to be applied for any disease is important in terms of the most accurate determination by the doctors and the appropriate treatment for the determined diagnosis. The COVID-19 pandemic that started in China in December 2019 spread all over the world in a short time. Researchers have begun to do different studies to make the most accurate diagnosis of COVID-19. Due to the rapid spread of COVID-19, doctors in the health sector of many countries were also caught off guard. Machine Learning Algorithms (MLAs) are of great importance in the development of computer-aided early and accurate diagnosis systems in today's medical field, as they greatly assist doctors in the medical diagnosis process. In this study, a method was proposed for the most accurate diagnosis of COVID-19 patients using the COVID-19 image data. Images were first standardized and features extracted using RGB values of 800x800 images, and these features were used in train and test processes for MLAs. 5 different MLAs were used in experimental studies using statistical measurements (k Nearest Neighbor (k-NN), Decision Tree (DT), Multinominal Logistic Regression (MLR), Naive Bayes (NB) and Support Vector Machine (SVM)). A method was proposed that automatically finds the highest classification success that these algorithms can achieve. In experimental studies, the following accuracy rates were obtained in train operations for MLAs, respectively; 1, 1, 1, 0.69565, 0.92753. Accuracy results in test operations were obtained as follows; 0.85714, 0.79591, 0.91836, 0.61224, 0.89795. After the application of the proposed method, the test success rate for MLR increased from 0.91 to 0.98. As a result of applying the proposed algorithm, more accurate results were obtained. The results obtained were given in the experimental studies section in detail. The results obtained proved to be very promising. According to the results, it was seen that the proposed method could be used effectively in future studies.

3.
Med Biol Eng Comput ; 58(11): 2775-2788, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32920727

ABSTRACT

Parkinson's disease is a neurological disorder that causes partial or complete loss of motor reflexes and speech and affects thinking, behavior, and other vital functions affecting the nervous system. Parkinson's disease causes impaired speech and motor abilities (writing, balance, etc.) in about 90% of patients and is often seen in older people. Some signs (deterioration of vocal cords) in medical voice recordings from Parkinson's patients are used to diagnose this disease. The database used in this study contains biomedical speech voice from 31 people of different age and sex related to this disease. The performance comparison of the machine learning algorithms k-Nearest Neighborhood (k-NN), Random Forest, Naive Bayes, and Support Vector Machine classifiers was performed with the used database. Moreover, the best classifier was determined for the diagnosis of Parkinson's disease. Eleven different training and test data (45 × 55, 50 × 50, 55 × 45, 60 × 40, 65 × 35, 70 × 30, 75 × 25, 80 × 20, 85 × 15, 90 × 10, 95 × 5) were processed separately. The data obtained from these training and tests were compared with statistical measurements. The training results of the k-NN classification algorithm were generally 100% successful. The best test result was obtained from Random Forest classifier with 85.81%. All statistical results and measured values are given in detail in the experimental studies section.Graphical abstract.


Subject(s)
Algorithms , Diagnosis, Computer-Assisted , Parkinson Disease/diagnosis , Databases, Factual/statistics & numerical data , Humans , Machine Learning , ROC Curve , Speech , Support Vector Machine , Tape Recording
4.
Comput Methods Programs Biomed ; 157: 113-120, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29477419

ABSTRACT

BACKGROUND AND OBJECTIVES: A Medical Expert System (MES) was developed which uses Reduced Rule Base to diagnose cancer risk according to the symptoms in an individual. A total of 13 symptoms were used. With the new MES, the reduced rules are controlled instead of all possibilities (213= 8192 different possibilities occur). By controlling reduced rules, results are found more quickly. The method of two-level simplification of Boolean functions was used to obtain Reduced Rule Base. Thanks to the developed application with the number of dynamic inputs and outputs on different platforms, anyone can easily test their own cancer easily. METHODS: More accurate results were obtained considering all the possibilities related to cancer. Thirteen different risk factors were determined to determine the type of cancer. The truth table produced in our study has 13 inputs and 4 outputs. The Boolean Function Minimization method is used to obtain less situations by simplifying logical functions. Diagnosis of cancer quickly thanks to control of the simplified 4 output functions. RESULTS: Diagnosis made with the 4 output values obtained using Reduced Rule Base was found to be quicker than diagnosis made by screening all 213= 8192 possibilities. With the improved MES, more probabilities were added to the process and more accurate diagnostic results were obtained. As a result of the simplification process in breast and renal cancer diagnosis 100% diagnosis speed gain, in cervical cancer and lung cancer diagnosis rate gain of 99% was obtained. CONCLUSIONS: With Boolean function minimization, less number of rules is evaluated instead of evaluating a large number of rules. Reducing the number of rules allows the designed system to work more efficiently and to save time, and facilitates to transfer the rules to the designed Expert systems. Interfaces were developed in different software platforms to enable users to test the accuracy of the application. Any one is able to diagnose the cancer itself using determinative risk factors. Thereby likely to beat the cancer with early diagnosis.


Subject(s)
Expert Systems , Kidney Neoplasms/diagnosis , Lung Neoplasms/diagnosis , Uterine Cervical Neoplasms/diagnosis , Algorithms , Early Detection of Cancer , Female , Humans , Reproducibility of Results , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...