Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Genes (Basel) ; 15(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38540381

ABSTRACT

The use of E-cigarettes, often considered a safer alternative to traditional smoking, has been associated with high rates of cellular toxicity, genetic alterations, and inflammation. Neuroinflammatory impacts of cigarette smoking during pregnancy have been associated with increased risks of adverse childhood health outcomes; however, it is still relatively unknown if the same propensity is conferred on offspring by maternal vaping during gestation. Results from our previous mouse inhalation studies suggest such a connection. In this earlier study, pregnant C57BL/6 mice were exposed daily to inhaled E-cig aerosols (i.e., propylene glycol and vegetable glycerin, [PG/VG]), with or without nicotine (16 mg/mL) by whole-body inhalation throughout gestation (3 h/d; 5 d/week; total ~3-week) and continuing postnatally from post-natal day (PND) 4-21. As neuroinflammation is involved in the dysregulation of glucose homeostasis and weight gain, this study aimed to explore genes associated with these pathways in 1-mo.-old offspring (equivalent in humans to 12-18 years of age). Results in the offspring demonstrated a significant increase in glucose metabolism protein levels in both treatment groups compared to filtered air controls. Gene expression analysis in the hypothalamus of 1 mo. old offspring exposed perinatally to E-cig aerosols, with and without nicotine, revealed significantly increased gene expression changes in multiple genes associated with neuroinflammation. In a second proof-of-principal parallel study employing the same experimental design, we shifted our focus to the hippocampus of the postpartum mothers. We targeted the mRNA levels of several neurotrophic factors (NTFs) indicative of neuroinflammation. While there were suggestive changes in mRNA expression in this study, levels failed to reach statistical significance. These studies highlight the need for ongoing research on E-cig-induced alterations in neuroinflammatory pathways.


Subject(s)
Electronic Nicotine Delivery Systems , Nicotine , Humans , Pregnancy , Female , Animals , Mice , Child , Nicotine/toxicity , Neuroinflammatory Diseases , Mice, Inbred C57BL , Aerosols/adverse effects , RNA, Messenger
3.
Toxics ; 10(12)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36548612

ABSTRACT

Black carbon (BC) is a major component of ambient particulate matter (PM), one of the six Environmental Protection Agency (EPA) Criteria air pollutants. The majority of research on the adverse effects of BC exposure so far has been focused on respiratory and cardiovascular systems in children. Few studies have also explored whether prenatal BC exposure affects the fetus, the placenta and/or the course of pregnancy itself. Thus, this contemporary review seeks to elucidate state-of-the-art research on this understudied topic. Epidemiological studies have shown a correlation between BC and a variety of adverse effects on fetal health, including low birth weight for gestational age and increased risk of preterm birth, as well as cardiometabolic and respiratory system complications following maternal exposure during pregnancy. There is epidemiological evidence suggesting that BC exposure increases the risk of gestational diabetes mellitus, as well as other maternal health issues, such as pregnancy loss, all of which need to be more thoroughly investigated. Adverse placental effects from BC exposure include inflammatory responses, interference with placental iodine uptake, and expression of DNA repair and tumor suppressor genes. Taking into account the differences in BC exposure around the world, as well as interracial disparities and the need to better understand the underlying mechanisms of the health effects associated with prenatal exposure, toxicological research examining the effects of early life exposure to BC is needed.

4.
Inhal Toxicol ; 33(9-14): 285-294, 2021.
Article in English | MEDLINE | ID: mdl-34715768

ABSTRACT

Inhalation is a significant route of exposure to toxic chemicals for electronic waste (e-waste) workers, especially for those whose activities take place in the informal sector. However, there remains a dearth of research on the health effects produced by the hazardous dismantling of e-waste and associated outcomes and biological mechanisms that occur as a result of inhalation exposure. This contemporary review highlights a number of the toxicological and epidemiological studies published on this topic to bring to light the many knowledge gaps that require further research, including in vitro and ex vivo investigations to address the health outcomes and underlying mechanisms of inhaled e-waste-associated pulmonary disease.


Subject(s)
Electronic Waste , Humans , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL