Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 30(3): 497-511, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38633271

ABSTRACT

Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01431-y.

2.
Plants (Basel) ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38592840

ABSTRACT

Nectarines have remarkable nutritional value, low caloric content, and are rich in antioxidants. However, despite substantial local and global demand, their susceptibility to rapid spoilage during peak summer harvest is limited. To address this issue, the current study investigated the potential benefits of using melatonin (MLT), an antioxidant biomolecule, in combination with edible hydrocolloid coatings like carboxymethylcellulose (CMC) and gum Arabic (G.A.) on 'Snow Queen' nectarine fruits. The nectarines were treated with various combinations of coatings, including 1% and 1.5% CMC, 8% and 10% G.A., and 0.1 mM melatonin. These coated and non-coated samples were stored under standard supermarket conditions (18 ± 1 °C, 85-90% R.H.) for 16 days. The outcomes demonstrated that the most effective treatment was the combination of 1% CMC with 0.1 mM melatonin. This treatment significantly (p ≤ 0.05) reduced the rate of respiration, curbed fruit decay by approximately 95%, minimized weight loss by around 42%, and maintained approximately 39% higher levels of total phenol content and roughly 30% greater antioxidant (AOX) activity. These positive effects were accompanied by preserved firmness and overall quality attributes. Moreover, the treatment extended the shelf life to 16 days through retarding senescence and suppressing the activities of lipoxygenase (LOX) and pectin methylesterase (PME), all without compromising the functional qualities of the nectarine.

3.
Plants (Basel) ; 12(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38068614

ABSTRACT

The assessment of the optimum harvesting stage is a prerequisite to evaluating the performance of new citrus genotypes. The intrinsic and extrinsic fruit quality traits of citrus fruits change throughout their developmental process; therefore, to ensure the highest quality, the fruit must be harvested at an appropriate stage of maturity. The biochemical changes in terms of total soluble solids (TSS), titratable acidity (TA), TSS/TA ratio, BrimA (Brix minus acidity), and ascorbic acid, in addition to the organoleptic acceptability of 16 new interspecific citrus hybrids, were evaluated in New Delhi (India) during the H1-H8 harvesting stage at 15-day intervals to standardize the optimum harvesting stage. The TA and ascorbic acid content were at a maximum level during the early harvesting stage and declined with time, reaching the minimum level in the last harvesting stage. The TSS, TSS/TA ratio, and BrimA values were found to have an increasing trend up to the last stage in most of the hybrids. The juice content shows an inclining trend during the initial harvesting observations, followed by stable juice content and then a decline. The BrimA was found to be a better predictor for consumer acceptability compared to the traditional maturity index TSS/TA ratio and, thus, harvesting maturity. Specific TSS, TA, and BrimA values, in addition to the juice percentage and ascorbic acid content, corresponding to the highest hedonic score, were judged as the optimum harvesting stage indicators for an individual hybrid genotype. Among the interspecific hybrids, SCSH-9-10/12, SCSH-11-15/12, and SCSH-17-19/13 were found to be superior, having better juice acceptability organoleptic scores (≥6.0) and higher juice content (≥40%). Principal component analysis based on fruit physico-chemical traits could be able to distinguish the optimum maturity stage in all of the citrus genotypes.

4.
Front Plant Sci ; 14: 1116151, 2023.
Article in English | MEDLINE | ID: mdl-36968388

ABSTRACT

Kinnow (Citrus nobilis Lour. × Citrus deliciosa Ten.) needs to be genetically improved for traits such as seedlessness using biotechnological tools. Indirect somatic embryogenesis (ISE) protocols have been reported for citrus improvement. However, its use is restricted due to frequent occurrences of somaclonal variation and low recovery of plantlets. Direct somatic embryogenesis (DSE) using nucellus culture has played a significant role in apomictic fruit crops. However, its application in citrus is limited due to the injury caused to tissues during isolation. Optimization of the explant developmental stage, explant preparation method, and modification in the in vitro culture techniques can play a vital role in overcoming the limitation. The present investigation deals with a modified in ovulo nucellus culture technique after the concurrent exclusion of preexisting embryos. The ovule developmental events were examined in immature fruits at different stages of fruit growth (stages I-VII). The ovules of stage III fruits (>21-25 mm in diameter) were found appropriate for in ovulo nucellus culture. Optimized ovule size induced somatic embryos at the micropylar cut end on induction medium containing Driver and Kuniyuki Walnut (DKW) basal medium with kinetin (KIN) 5.0 mg L-1 and malt extract (ME) 1,000 mg L-1. Simultaneously, the same medium supported the maturation of somatic embryos. The matured embryos from the above medium gave robust germination with bipolar conversion on Murashige and Tucker (MT) medium + gibberellic acid (GA3) 2.0 mg L-1 + ά-naphthaleneacetic acid (NAA) 0.5 mg L-1 + spermidine 100 mg L-1 + coconut water (CW) 10% (v/v). The bipolar germinated seedlings established well upon preconditioning in a plant bio regulator (PBR)-free liquid medium under the light. Consequently, a cent percent survival of emblings was achieved on a potting medium containing cocopeat:vermiculite:perlite (2:1:1). Histological studies confirmed the single nucellus cell origin of somatic embryos by undergoing normal developmental events. Eight polymorphic Inter Simple Sequence Repeats (ISSR) markers confirmed the genetic stability of acclimatized emblings. Since the protocol can induce rapid single-cell origin of genetically stable in vitro regenerants in high frequency, it has potential for the induction of solid mutants, besides crop improvement, mass multiplication, gene editing, and virus elimination in Kinnow mandarin.

SELECTION OF CITATIONS
SEARCH DETAIL
...