Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Laryngoscope ; 134(1): 272-282, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37436167

ABSTRACT

OBJECTIVES: No curative injectable therapy exists for unilateral vocal fold paralysis. Herein, we explore the early implications of muscle-derived motor-endplate expressing cells (MEEs) for injectable vocal fold medialization after recurrent laryngeal nerve (RLN) injury. METHODS: Yucatan minipigs underwent right RLN transection (without repair) and muscle biopsies. Autologous muscle progenitor cells were isolated, cultured, differentiated, and induced to form MEEs. Three weeks after the injury, MEEs or saline were injected into the paralyzed right vocal fold. Outcomes including evoked laryngeal electromyography (LEMG), laryngeal adductor pressure, and acoustic vocalization data were analyzed up to 7 weeks post-injury. Harvested porcine larynges were examined for volume, gene expression, and histology. RESULTS: MEE injections were tolerated well, with all pigs demonstrating continued weight gain. Blinded analysis of videolaryngoscopy post-injection revealed infraglottic fullness, and no inflammatory changes. Four weeks after injection, LEMG revealed on average higher right distal RLN activity retention in MEE pigs. MEE-injected pigs on average had vocalization durations, frequencies, and intensities higher than saline pigs. Post-mortem, the MEE-injected larynges revealed statistically greater volume on quantitative 3D ultrasound, and statistically increased expression of neurotrophic factors (BDNF, NGF, NTF3, NTF4, NTN1) on quantitative PCR. CONCLUSIONS: Minimally invasive MEE injection appears to establish an early molecular and microenvironmental framework to encourage innate RLN regeneration. Longer follow-up is needed to determine if early findings will translate into functional contraction. LEVEL OF EVIDENCE: NA Laryngoscope, 134:272-282, 2024.


Subject(s)
Larynx , Recurrent Laryngeal Nerve Injuries , Vocal Cord Paralysis , Animals , Swine , Vocal Cords , Swine, Miniature , Vocal Cord Paralysis/therapy , Electromyography , Recurrent Laryngeal Nerve/surgery , Muscle Cells , Laryngeal Muscles/innervation
2.
J Cell Sci Ther ; 14(1)2023.
Article in English | MEDLINE | ID: mdl-37250272

ABSTRACT

Objective: To describe how differing injector needles and delivery vehicles impact Autologous Muscle-Derived Cell (AMDC) viability when used for laryngeal injection. Methods: In this study, adult porcine muscle tissue was harvested and used to create AMDC populations. While controlling cell concentration (1 × 107 cells/ml), AMDCs including Muscle Progenitor Cells (MPCs) or Motor Endplate Expressing Cells (MEEs) were suspended in either phosphate-buffered saline or polymerizable (in-situ scaffold forming) type I oligomeric collagen solution. Cell suspensions were then injected through 23- and 27-gauge needles of different lengths at the same rate (2 ml/min) using a syringe pump. Cell viability was measured immediately after injection and 24- and 48-hours post-injection, and then compared to baseline cell viability prior to injection. Results: The viability of cells post-injection was not impacted by needle length or needle gauge but was significantly impacted by the delivery vehicle. Overall, injection of cells using collagen as a delivery vehicle maintained the highest cell viability. Conclusion: Needle gauge, needle length, and delivery vehicle are important factors that can affect the viability of injected cell populations. These factors should be considered and adapted to improve injectable MDC therapy outcomes when used for laryngeal applications.

3.
J Voice ; 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35504794

ABSTRACT

BACKGROUND/OBJECTIVES: While voice-related therapeutic interventions are often researched preclinically in the porcine model, there are no well-established methods to induce porcine glottic phonation. Described approaches, such as training animals to phonate for positive reinforcement are time-consuming and plagued by inherent variability in the type of phonation produced and contamination of background noise. Thus, a reliable method of assessing glottic phonation in the porcine model is needed. METHODS: In this study, we have created a novel pulley-based apparatus with harness for "pig-lifting" with surrounding acoustic insulation and high-directional microphone with digital recorder for recording phonation. Praat and Matlab were used to analyze all porcine vocalizations for fundamental frequency (F0), intensity, duration of phonation and cepstral peak prominence (CPP). Glottic phonation was detected using F0 (≥2000 hz), duration (≥3 seconds) and researcher perceptual judgment. Partial-glottic phonations were also analyzed. Reliability between researcher judgment and acoustic measures for glottic phonation detection was high. RESULTS: Acoustic analysis demonstrated that glottic and partial-glottic phonation was consistently elicited, with no formal training of the minipigs required. Glottic vocalizations increased with multiple lifts. Glottic phonation continued to be elicited after multiple days but became less frequent. Glottic and partial-glottic phonations had similar CPP values over the 6 experimental days. CONCLUSION: Our cost-effective, reliable method of inducing and recording glottic phonation in the porcine model may provide a cost effective, preclinical tool in voice research.

SELECTION OF CITATIONS
SEARCH DETAIL
...