Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(12): 1631-1639, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116426

ABSTRACT

Redirecting E3 ligases to neo-substrates, leading to their proteasomal disassembly, known as targeted protein degradation (TPD), has emerged as a promising alternative to traditional, occupancy-driven pharmacology. Although the field has expanded tremendously over the past years, the choice of E3 ligases remains limited, with an almost exclusive focus on CRBN and VHL. Here, we report the discovery of novel ligands to the PRY-SPRY domain of TRIM58, a RING ligase that is specifically expressed in erythroid precursor cells. A DSF screen, followed by validation using additional biophysical methods, led to the identification of TRIM58 ligand TRIM-473. A basic SAR around the chemotype was established by utilizing a competitive binding assay employing a short FP peptide probe derived from an endogenous TRIM58 substrate. The X-ray co-crystal structure of TRIM58 in complex with TRIM-473 gave insights into the binding mode and potential exit vectors for bifunctional degrader design.

2.
Biochem Pharmacol ; 209: 115418, 2023 03.
Article in English | MEDLINE | ID: mdl-36693437

ABSTRACT

Myeloperoxidase (MPO) is a heme-containing peroxidase from phagocytic cells, which plays an important role in the innate immune response. The primary anti-microbial function of MPO is achieved by catalyzing the oxidation of halides by hydrogen peroxide (H2O2). Upon activation of phagocytes, MPO activity is detectable in both phagosomes and extracellularly, where it can remain or transcytose into interstitial compartments. Activated MPO leads to oxidative stress and tissue damage in many inflammatory states, including cardiovascular disease. Starting from a low molecular weight (LMW) high throughput screening (HTS) hit, here we report the discovery of a novel pyrrolidinone indole (IN-4) as a highly potent MPO inhibitor. This compound displays similar in vitro potency across peroxidation, plasma and NETosis assays. In a dilution/dialysis study, <5% of the original MPO activity was detected post-incubation of MPO with IN-4, suggesting irreversible enzyme inhibition. A fast MPO inactivation rate (kinact/Ki) and low partition ratio (k3/k4) make IN-4 kinetic properties attractive for an MPO inhibitor. This compound also displays significant selectivity over the closely related thyroid peroxidase (TPO), and is selective for extracellular MPO over intracellular (neutrophil) MPO. Moreover, IN-4 shows good exposure, low clearance and high oral bioavailability in mice, rats and dogs. The high in vitro MPO activity and high oral exposure observed with IN-4 result in a dose-dependent inhibition of MPO activity in three mouse models of inflammation. In conclusion, IN-4 is a novel, potent, mechanism-based and selective MPO inhibitor, which may be used as superior therapeutic agent to treat multiple inflammatory conditions, including cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Peroxidase , Rats , Mice , Animals , Dogs , Hydrogen Peroxide , Antioxidants , Indoles , Pyrrolidinones
3.
J Med Chem ; 64(8): 4744-4761, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33822618

ABSTRACT

Spinal muscular atrophy (SMA) is a debilitating neuromuscular disease caused by low levels of functional survival motor neuron protein (SMN) resulting from a deletion or loss of function mutation of the survival motor neuron 1 (SMN1) gene. Branaplam (1) elevates levels of full-length SMN protein in vivo by modulating the splicing of the related gene SMN2 to enhance the exon-7 inclusion and increase levels of the SMN. The intramolecular hydrogen bond present in the 2-hydroxyphenyl pyridazine core of 1 enforces a planar conformation of the biaryl system and is critical for the compound activity. Scaffold morphing revealed that the pyridazine could be replaced by a 1,3,4-thiadiazole, which provided additional opportunities for a conformational constraint of the biaryl through intramolecular 1,5-sulfur-oxygen (S···O) or 1,5-sulfur-halogen (S···X) noncovalent interactions. Compound 26, which incorporates a 2-fluorophenyl thiadiazole motif, demonstrated a greater than 50% increase in production of full-length SMN protein in a mouse model of SMA.


Subject(s)
Drug Design , RNA Splicing , Thiadiazoles/chemistry , Animals , Half-Life , Halogens/chemistry , Humans , Male , Mice , Molecular Conformation , Motor Neurons/metabolism , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Oxygen/chemistry , Pyridazines/chemistry , RNA Splicing/drug effects , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfur/chemistry , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Thiadiazoles/metabolism , Thiadiazoles/pharmacology
4.
J Med Chem ; 61(24): 11021-11036, 2018 12 27.
Article in English | MEDLINE | ID: mdl-30407821

ABSTRACT

Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.


Subject(s)
Brain/drug effects , ERG1 Potassium Channel/metabolism , Muscular Atrophy, Spinal/drug therapy , Pyridazines/chemistry , Administration, Oral , Animals , Brain/metabolism , Cell Line , Crystallography, X-Ray , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel/antagonists & inhibitors , Humans , Mice, Inbred C57BL , Motor Neurons/drug effects , Muscular Atrophy, Spinal/genetics , Pyridazines/pharmacology , Quantitative Structure-Activity Relationship , RNA Splicing , Rats, Sprague-Dawley , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics
5.
Bioorg Med Chem Lett ; 22(2): 929-32, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22197144

ABSTRACT

We report the identification of a novel series of human epithelial sodium channel (ENaC) blockers that are structurally distinct from the pyrazinoyl guanidine chemotype found in prototypical ENaC blockers such as amiloride. Following a rational design hypothesis a series of quaternary amines were prepared and evaluated for their ability to block ion transport via ENaC in human bronchial epithelial cells (HBECs). Compound 11 has an IC(50) of 200nM and is efficacious in the Guinea-pig tracheal potential difference (TPD) model of ENaC blockade with an ED(50) of 44µgkg(-1) at 1h. As such, pyrazinoyl quaternary amines represent the first examples of a promising new class of human ENaC blockers.


Subject(s)
Amines/chemistry , Drug Design , Epithelial Cells/drug effects , Epithelial Sodium Channel Blockers , Sodium Channel Blockers/chemical synthesis , Sodium Channel Blockers/pharmacology , Amines/pharmacology , Bronchi/cytology , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , Epithelial Sodium Channels/metabolism , Humans , Sodium Channel Blockers/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...