Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Phys Med ; 121: 103357, 2024 May.
Article in English | MEDLINE | ID: mdl-38640631

ABSTRACT

PURPOSE: Large scintillation crystals-based gamma cameras play a crucial role in nuclear medicine imaging. In this study, a large field-of-view (FOV) gamma detector consisting of 48 square PMTs developed using a new readout electronics, reducing 48 (6 × 8) analog signals to 14 (6 + 8) analog sums of each row and column, with reduced complexity and cost while preserving image quality. METHODS: All 14 analog signals were converted to digital signals using AD9257 high-speed analog to digital (ADC) converters driven by the SPARTAN-6 family of field-programmable gate arrays (FPGA) in order to calculate the signal integrals. The positioning algorithm was based on the digital correlated signal enhancement (CSE) algorithm implemented in the acquisition software. The performance characteristics of the developed gamma camera were measured using the NEMA NU 1-2018 standards. RESULTS: The measured energy resolution of the developed detector was 8.7 % at 140 keV, with an intrinsic spatial resolution of 3.9 mm. The uniformity was within 0.6 %, while the linearity was within 0.1 %. CONCLUSION: The performance evaluation demonstrated that the developed detector has suitable specifications for high-end nuclear medicine imaging.


Subject(s)
Gamma Cameras , Electronics/instrumentation , Equipment Design , Algorithms , Image Processing, Computer-Assisted , Costs and Cost Analysis
2.
Ann Nucl Med ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575814

ABSTRACT

PURPOSE: This study aimed to examine the robustness of positron emission tomography (PET) radiomic features extracted via different segmentation methods before and after ComBat harmonization in patients with non-small cell lung cancer (NSCLC). METHODS: We included 120 patients (positive recurrence = 46 and negative recurrence = 74) referred for PET scanning as a routine part of their care. All patients had a biopsy-proven NSCLC. Nine segmentation methods were applied to each image, including manual delineation, K-means (KM), watershed, fuzzy-C-mean, region-growing, local active contour (LAC), and iterative thresholding (IT) with 40, 45, and 50% thresholds. Diverse image discretizations, both without a filter and with different wavelet decompositions, were applied to PET images. Overall, 6741 radiomic features were extracted from each image (749 radiomic features from each segmented area). Non-parametric empirical Bayes (NPEB) ComBat harmonization was used to harmonize the features. Linear Support Vector Classifier (LinearSVC) with L1 regularization For feature selection and Support Vector Machine classifier (SVM) with fivefold nested cross-validation was performed using StratifiedKFold with 'n_splits' set to 5 to predict recurrence in NSCLC patients and assess the impact of ComBat harmonization on the outcome. RESULTS: From 749 extracted radiomic features, 206 (27%) and 389 (51%) features showed excellent reliability (ICC ≥ 0.90) against segmentation method variation before and after NPEB ComBat harmonization, respectively. Among all, 39 features demonstrated poor reliability, which declined to 10 after ComBat harmonization. The 64 fixed bin widths (without any filter) and wavelets (LLL)-based radiomic features set achieved the best performance in terms of robustness against diverse segmentation techniques before and after ComBat harmonization. The first-order and GLRLM and also first-order and NGTDM feature families showed the largest number of robust features before and after ComBat harmonization, respectively. In terms of predicting recurrence in NSCLC, our findings indicate that using ComBat harmonization can significantly enhance machine learning outcomes, particularly improving the accuracy of watershed segmentation, which initially had fewer reliable features than manual contouring. Following the application of ComBat harmonization, the majority of cases saw substantial increase in sensitivity and specificity. CONCLUSION: Radiomic features are vulnerable to different segmentation methods. ComBat harmonization might be considered a solution to overcome the poor reliability of radiomic features.

3.
Quant Imaging Med Surg ; 14(3): 2146-2164, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38545051

ABSTRACT

Background: Positron emission tomography (PET) imaging encounters the obstacle of partial volume effects, arising from its limited intrinsic resolution, giving rise to (I) considerable bias, particularly for structures comparable in size to the point spread function (PSF) of the system; and (II) blurred image edges and blending of textures along the borders. We set out to build a deep learning-based framework for predicting partial volume corrected full-dose (FD + PVC) images from either standard or low-dose (LD) PET images without requiring any anatomical data in order to provide a joint solution for partial volume correction and de-noise LD PET images. Methods: We trained a modified encoder-decoder U-Net network with standard of care or LD PET images as the input and FD + PVC images by six different PVC methods as the target. These six PVC approaches include geometric transfer matrix (GTM), multi-target correction (MTC), region-based voxel-wise correction (RBV), iterative Yang (IY), reblurred Van-Cittert (RVC), and Richardson-Lucy (RL). The proposed models were evaluated using standard criteria, such as peak signal-to-noise ratio (PSNR), root mean squared error (RMSE), structural similarity index (SSIM), relative bias, and absolute relative bias. Results: Different levels of error were observed for these partial volume correction methods, which were relatively smaller for GTM with a SSIM of 0.63 for LD and 0.29 for FD, IY with an SSIM of 0.63 for LD and 0.67 for FD, RBV with an SSIM of 0.57 for LD and 0.65 for FD, and RVC with an SSIM of 0.89 for LD and 0.94 for FD PVC approaches. However, large quantitative errors were observed for multi-target MTC with an RMSE of 2.71 for LD and 2.45 for FD and RL with an RMSE of 5 for LD and 3.27 for FD PVC approaches. Conclusions: We found that the proposed framework could effectively perform joint de-noising and partial volume correction for PET images with LD and FD input PET data (LD vs. FD). When no magnetic resonance imaging (MRI) images are available, the developed deep learning models could be used for partial volume correction on LD or standard PET-computed tomography (PET-CT) scans as an image quality enhancement technique.

4.
Phys Med ; 119: 103315, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377837

ABSTRACT

PURPOSE: This work set out to propose an attention-based deep neural network to predict partial volume corrected images from PET data not utilizing anatomical information. METHODS: An attention-based convolutional neural network (ATB-Net) is developed to predict PVE-corrected images in brain PET imaging by concentrating on anatomical areas of the brain. The performance of the deep neural network for performing PVC without using anatomical images was evaluated for two PVC methods, including iterative Yang (IY) and reblurred Van-Cittert (RVC) approaches. The RVC and IY PVC approaches were applied to PET images to generate the reference images. The training of the U-Net network for the partial volume correction was trained twice, once without using the attention module and once with the attention module concentrating on the anatomical brain regions. RESULTS: Regarding the peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and root mean square error (RMSE) metrics, the proposed ATB-Net outperformed the standard U-Net model (without attention compartment). For the RVC technique, the ATB-Net performed just marginally better than the U-Net; however, for the IY method, which is a region-wise method, the attention-based approach resulted in a substantial improvement. The mean absolute relative SUV difference and mean absolute relative bias improved by 38.02 % and 91.60 % for the RVC method and 77.47 % and 79.68 % for the IY method when using the ATB-Net model, respectively. CONCLUSIONS: Our results propose that without using anatomical data, the attention-based DL model could perform PVC on PET images, which could be employed for PVC in PET imaging.


Subject(s)
Brain , Fluorodeoxyglucose F18 , Brain/diagnostic imaging , Neural Networks, Computer , Positron-Emission Tomography/methods , Signal-To-Noise Ratio , Image Processing, Computer-Assisted/methods
5.
Biomed Phys Eng Express ; 10(1)2023 12 20.
Article in English | MEDLINE | ID: mdl-37995359

ABSTRACT

Purpose.This study aims to predict radiotherapy-induced rectal and bladder toxicity using computed tomography (CT) and magnetic resonance imaging (MRI) radiomics features in combination with clinical and dosimetric features in rectal cancer patients.Methods.A total of sixty-three patients with locally advanced rectal cancer who underwent three-dimensional conformal radiation therapy (3D-CRT) were included in this study. Radiomics features were extracted from the rectum and bladder walls in pretreatment CT and MR-T2W-weighted images. Feature selection was performed using various methods, including Least Absolute Shrinkage and Selection Operator (Lasso), Minimum Redundancy Maximum Relevance (MRMR), Chi-square (Chi2), Analysis of Variance (ANOVA), Recursive Feature Elimination (RFE), and SelectPercentile. Predictive modeling was carried out using machine learning algorithms, such as K-nearest neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Naive Bayes (NB), Gradient Boosting (XGB), and Linear Discriminant Analysis (LDA). The impact of the Laplacian of Gaussian (LoG) filter was investigated with sigma values ranging from 0.5 to 2. Model performance was evaluated in terms of the area under the receiver operating characteristic curve (AUC), accuracy, precision, sensitivity, and specificity.Results.A total of 479 radiomics features were extracted, and 59 features were selected. The pre-MRI T2W model exhibited the highest predictive performance with an AUC: 91.0/96.57%, accuracy: 90.38/96.92%, precision: 90.0/97.14%, sensitivity: 93.33/96.50%, and specificity: 88.09/97.14%. These results were achieved with both original image and LoG filter (sigma = 0.5-1.5) based on LDA/DT-RF classifiers for proctitis and cystitis, respectively. Furthermore, for the CT data, AUC: 90.71/96.0%, accuracy: 90.0/96.92%, precision: 88.14/97.14%, sensitivity: 93.0/96.0%, and specificity: 88.09/97.14% were acquired. The highest values were achieved using XGB/DT-XGB classifiers for proctitis and cystitis with LoG filter (sigma = 2)/LoG filter (sigma = 0.5-2), respectively. MRMR/RFE-Chi2 feature selection methods demonstrated the best performance for proctitis and cystitis in the pre-MRI T2W model. MRMR/MRMR-Lasso yielded the highest model performance for CT.Conclusion.Radiomics features extracted from pretreatment CT and MR images can effectively predict radiation-induced proctitis and cystitis. The study found that LDA, DT, RF, and XGB classifiers, combined with MRMR, RFE, Chi2, and Lasso feature selection algorithms, along with the LoG filter, offer strong predictive performance. With the inclusion of a larger training dataset, these models can be valuable tools for personalized radiotherapy decision-making.


Subject(s)
Cystitis , Proctitis , Rectal Neoplasms , Humans , Bayes Theorem , Radiomics , Proctitis/diagnostic imaging , Proctitis/etiology , Cystitis/diagnostic imaging , Cystitis/etiology , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/radiotherapy , Machine Learning
6.
Med Phys ; 50(11): 6815-6827, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37665768

ABSTRACT

BACKGROUND: The limited axial field-of-view (FOV) of conventional clinical positron emission tomography (PET) scanners (∼15 to 26 cm) allows detecting only 1% of all coincidence photons, hence limiting significantly their sensitivity. To overcome this limitation, the EXPLORER consortium developed the world's first total-body PET/CT scanner that significantly increased the sensitivity, thus enabling to decrease the scan duration or injected dose. PURPOSE: The purpose of this study is to perform and validate Monte Carlo simulations of the uEXPLORER PET scanner, which can be used to devise novel conceptual designs and geometrical configurations through obtaining features that are difficult to obtain experimentally. METHODS: The total-body uEXPLORER PET scanner was modeled using GATE Monte Carlo (MC) platform. The model was validated through comparison with experimental measurements of various performance parameters, including spatial resolution, sensitivity, count rate performance, and image quality, according to NEMA-NU2 2018 standards. Furthermore, the effects of the time coincidence window and maximum ring difference on the count rate and noise equivalent count rate (NECR) were evaluated. RESULTS: Overall, the validation study showed that there was a good agreement between the simulation and experimental results. The differences between the simulated and experimental total sensitivity for the NEMA and extended phantoms at the center of the FOV were 2.3% and 0.0%, respectively. The difference in peak NECR was 9.9% for the NEMA phantom and 1.0% for the extended phantom. The average bias between the simulated and experimental results of the full-width-at-half maximum (FWHM) for six different positions and three directions was 0.12 mm. The simulations showed that using a variable coincidence time window based on the maximum ring difference can reduce the effect of random coincidences and improve the NECR compared to a constant time coincidence window. The NECR corresponding to 252-ring difference was 2.11 Mcps, which is larger than the NECR corresponding to 336-ring difference (2.04 Mcps). CONCLUSION: The developed MC model of the uEXPLORER PET scanner was validated against experimental measurements and can be used for further assessment and design optimization of the scanner.


Subject(s)
Positron Emission Tomography Computed Tomography , Tomography, X-Ray Computed , Monte Carlo Method , Positron-Emission Tomography/methods , Computer Simulation , Phantoms, Imaging
7.
Phys Med Biol ; 67(21)2022 10 19.
Article in English | MEDLINE | ID: mdl-36162408

ABSTRACT

Objective.To improve positron emission tomography (PET) image quality, we aim to generate images of quality comparable to standard scan duration images using short scan duration (1/8 and 1/16 standard scan duration) inputs and assess the generated standard scan duration images quantitative and qualitatively. Also, the effect of training dataset properties (i.e. body mass index (BMI)) on the performance of the model(s) will be explored.Approach.Whole-body PET scans of 42 patients (4118F-FDG and one68Ga-PSMA) scanned with standard radiotracer dosage were included in this study. One18F-FDG patient data was set aside and the remaining 40 patients were split into four subsets of 10 patients with different mean patient BMI. Multiple copies of a developed cycle-GAN network were trained on each subset to predict standard scan images using 1/8 and 1/16 short duration scans. Also, the models' performance was tested on a patient scanned with the68Ga-PSMA radiotracer. Quantitative performance was tested using peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and normalized root mean squared error (NRMSE) metrics, and two nuclear medicine specialists analyzed images qualitatively.Main results.The developed cycle-GAN model improved the PSNR, SSIM, and NRMSE of the 1/8 and 1/16 short scan duration inputs both18F-FDG and68Ga-PSMA radiotracers. Although, quantitatively PSNR, SSIM, and NRMSE of the 1/16 scan duration level were improved more than 1/8 counterparts, however, the later were qualitatively more appealing. SUVmeanand SUVmaxof the generated images were also indicative of the improvements. The cycle-GAN model was much more capable in terms of image quality improvements and speed than the NLM denoising method. All results proved statistically significant using the paired-sample T-Test statistical test (p-value < 0.05).Significance.Our suggested approach based on cycle-GAN could improve image quality of the 1/8 and 1/16 short scan-duration inputs through noise reduction both quantitively (PSNR, SSIM, NRMSE, SUVmean, and SUVmax) and qualitatively (contrast, noise, and diagnostic capability) to the level comparable to the standard scan-duration counterparts. The cycle-GAN model(s) had a similar performance on the68Ga-PSMA to the18F-FDG images and could improve the images qualitatively and quantitatively but requires more extensive study. Overall, images predicted from 1/8 short scan-duration inputs had the upper hand compared with 1/16 short scan-duration inputs.


Subject(s)
Fluorodeoxyglucose F18 , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Positron-Emission Tomography , Signal-To-Noise Ratio
8.
Nucl Med Commun ; 43(9): 1004-1014, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35836388

ABSTRACT

OBJECTIVES: This study aimed to measure standardized uptake value (SUV) variations across different PET/computed tomography (CT) scanners to harmonize quantification across systems. METHODS: We acquired images using the National Electrical Manufacturers Association International Electrotechnical Commission phantom from three PET/CT scanners operated using routine imaging protocols at each site. The SUVs of lesions were assessed in the presence of reference values by a digital reference object (DRO) and recommendations by the European Association of Nuclear Medicine (EANM/EARL) to measure inter-site variations. For harmonization, Gaussian filters with tuned full width at half maximum (FWHM) values were applied to images to minimize differences in SUVs between reference and images. Inter-site variation of SUVs was evaluated in both pre- and postharmonization situations. Test-retest analysis was also carried out to evaluate repeatability. RESULTS: SUVs from different scanners became significantly more consistent, and inter-site differences decreased for SUV mean , SUV max and SUV peak from 17.3, 20.7, and 15.5% to 4.8, 4.7, and 2.7%, respectively, by harmonization ( P values <0.05 for all). The values for contrast-to-noise ratio in the smallest lesion of the phantom verified preservation of image quality following harmonization (>2.8%). CONCLUSIONS: Harmonization significantly lowered variations in SUV measurements across different PET/CT scanners, improving reproducibility while preserving image quality.


Subject(s)
Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Phantoms, Imaging , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Reproducibility of Results
9.
J Appl Clin Med Phys ; 23(9): e13696, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35699200

ABSTRACT

PURPOSE: To investigate the potential benefits of FDG PET radiomic feature maps (RFMs) for target delineation in non-small cell lung cancer (NSCLC) radiotherapy. METHODS: Thirty-two NSCLC patients undergoing FDG PET/CT imaging were included. For each patient, nine grey-level co-occurrence matrix (GLCM) RFMs were generated. gross target volume (GTV) and clinical target volume (CTV) were contoured on CT (GTVCT , CTVCT ), PET (GTVPET40 , CTVPET40 ), and RFMs (GTVRFM , CTVRFM ,). Intratumoral heterogeneity areas were segmented as GTVPET50-Boost and radiomic boost target volume (RTVBoost ) on PET and RFMs, respectively. GTVCT in homogenous tumors and GTVPET40 in heterogeneous tumors were considered as GTVgold standard (GTVGS ). One-way analysis of variance was conducted to determine the threshold that finds the best conformity for GTVRFM with GTVGS . Dice similarity coefficient (DSC) and mean absolute percent error (MAPE) were calculated. Linear regression analysis was employed to report the correlations between the gold standard and RFM-derived target volumes. RESULTS: Entropy, contrast, and Haralick correlation (H-correlation) were selected for tumor segmentation. The threshold values of 80%, 50%, and 10% have the best conformity of GTVRFM-entropy , GTVRFM-contrast , and GTVRFM-H-correlation with GTVGS , respectively. The linear regression results showed a positive correlation between GTVGS and GTVRFM-entropy (r = 0.98, p < 0.001), between GTVGS and GTVRFM-contrast (r = 0.93, p < 0.001), and between GTVGS and GTVRFM-H-correlation (r = 0.91, p < 0.001). The average threshold values of 45% and 15% were resulted in the best segmentation matching between CTVRFM-entropy and CTVRFM-contrast with CTVGS , respectively. Moreover, we used RFM to determine RTVBoost in the heterogeneous tumors. Comparison of RTVBoost with GTVPET50-Boost MAPE showed the volume error differences of 31.7%, 36%, and 34.7% in RTVBoost-entropy , RTVBoost-contrast , and RTVBoost-H-correlation , respectively. CONCLUSIONS: FDG PET-based radiomics features in NSCLC demonstrated a promising potential for decision support in radiotherapy, helping radiation oncologists delineate tumors and generate accurate segmentation for heterogeneous region of tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Radiopharmaceuticals
10.
Med Phys ; 49(6): 3783-3796, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338722

ABSTRACT

OBJECTIVES: This study is aimed at examining the synergistic impact of motion and acquisition/reconstruction parameters on 18 F-FDG PET image radiomic features in non-small cell lung cancer (NSCLC) patients, and investigating the robustness of features performance in differentiating NSCLC histopathology subtypes. METHODS: An in-house developed thoracic phantom incorporating lesions with different sizes was used with different reconstruction settings, including various reconstruction algorithms, number of subsets and iterations, full-width at half-maximum of post-reconstruction smoothing filter and acquisition parameters, including injected activity and test-retest with and without motion simulation. To simulate motion, a special motor was manufactured to simulate respiratory motion based on a normal patient in two directions. The lesions were delineated semi-automatically to extract 174 radiomic features. All radiomic features were categorized according to the coefficient of variation (COV) to select robust features. A cohort consisting of 40 NSCLC patients with adenocarcinoma (n = 20) and squamous cell carcinoma (n = 20) was retrospectively analyzed. Statistical analysis was performed to discriminate robust features in differentiating histopathology subtypes of NSCLC lesions. RESULTS: Overall, 29% of radiomic features showed a COV ≤5% against motion. Forty-five percent and 76% of the features showed a COV ≤ 5% against the test-retest with and without motion in large lesions, respectively. Thirty-three percent and 45% of the features showed a COV ≤ 5% against different reconstruction parameters with and without motion, respectively. For NSCLC histopathological subtype differentiation, statistical analysis showed that 31 features were significant (p-value < 0.05). Two out of the 31 significant features, namely, the joint entropy of GLCM (AUC = 0.71, COV = 0.019) and median absolute deviation of intensity histogram (AUC = 0.7, COV = 0.046), were robust against the motion (same reconstruction setting). CONCLUSIONS: Motion, acquisition, and reconstruction parameters significantly impact radiomic features, just as their synergies. Radiomic features with high predictive performance (statistically significant) in differentiating histopathological subtype of NSCLC may be eliminated due to non-reproducibility.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Fluorodeoxyglucose F18 , Humans , Image Processing, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies
11.
Comput Med Imaging Graph ; 94: 102010, 2021 12.
Article in English | MEDLINE | ID: mdl-34784505

ABSTRACT

The amount of radiotracer injected into laboratory animals is still the most daunting challenge facing translational PET studies. Since low-dose imaging is characterized by a higher level of noise, the quality of the reconstructed images leaves much to be desired. Being the most ubiquitous techniques in denoising applications, edge-aware denoising filters, and reconstruction-based techniques have drawn significant attention in low-count applications. However, for the last few years, much of the credit has gone to deep-learning (DL) methods, which provide more robust solutions to handle various conditions. Albeit being extensively explored in clinical studies, to the best of our knowledge, there is a lack of studies exploring the feasibility of DL-based image denoising in low-count small animal PET imaging. Therefore, herein, we investigated different DL frameworks to map low-dose small animal PET images to their full-dose equivalent with quality and visual similarity on a par with those of standard acquisition. The performance of the DL model was also compared to other well-established filters, including Gaussian smoothing, nonlocal means, and anisotropic diffusion. Visual inspection and quantitative assessment based on quality metrics proved the superior performance of the DL methods in low-count small animal PET studies, paving the way for a more detailed exploration of DL-assisted algorithms in this domain.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Algorithms , Animals , Image Processing, Computer-Assisted/methods , Positron-Emission Tomography , Signal-To-Noise Ratio
12.
Ann Nucl Med ; 35(4): 438-446, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33469855

ABSTRACT

BACKGROUND: A gamma probe is a handheld device used for intraoperative interventions following interstitial injection of a radiotracer to locate regional lymph nodes through the external detection of radiation. This work reports on the design and performance evaluation of a novel fully integrated gamma probe (GammaPen), recently developed by our group. MATERIALS AND METHODS: GammaPen is an all-in-one pocket gamma probe with low weight and adequate dimensions, consisting of a detector, a control unit and output all together. The detector module consists of a cylindrical Thallium-activated Cesium Iodide [CsI (Tl)] crystal optically coupled to a Silicon photomultiplier (SiPM), shielded using Tungsten housing on side and back faces. The electronics of the probe consists of two small boards to handle signal processing and analog peak detection tasks. A number of parameters, including probe sensitivity in air/water, spatial resolution in air/water, angular resolution in air/water, and side and back shielding effectiveness, were measured to evaluate the performance of the probe based on NEMA NU3-2004 standards. RESULTS: The sensitivity of the probe in air at distances of 10, 30, and 50 mm is 18784, 3500, and 1575 cps/MBq. The sensitivity in scattering medium was also measured at distances of 10, 30, and 50 mm as 17,680, 3050, and 1104 cps/MBq. The spatial and angular resolutions in scattering medium were 47 mm and 87 degree at 30 mm distance from the probe, while they were 40 mm and 77 degree in air. The detector shielding effectiveness and leakage sensitivity are 99.91% and 0.09%, respectively. CONCLUSION: The performance characterization showed that GammaPen can be used effectively for sentinel lymph node localization. The probe was successfully used in several surgical interventions by an experienced surgeon confirming its suitability in a clinical setting.


Subject(s)
Cesium/chemistry , Iodides/chemistry , Lymph Nodes/diagnostic imaging , Sentinel Lymph Node Biopsy/instrumentation , Sentinel Lymph Node Biopsy/methods , Thallium/chemistry , Cesium/standards , Gamma Cameras , Gamma Rays , Humans , Iodides/standards , Radionuclide Imaging , Sensitivity and Specificity , Thallium/standards
13.
Neurol Sci ; 42(6): 2379-2390, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33052576

ABSTRACT

PURPOSE: Functional magnetic resonance imaging (fMRI) in resting state can be used to evaluate the functional organization of the human brain in the absence of any task or stimulus. The functional connectivity (FC) has non-stationary nature and consented to be varying over time. By considering the dynamic characteristics of the FC and using graph theoretical analysis and a machine learning approach, we aim to identify the laterality in cases of temporal lobe epilepsy (TLE). METHODS: Six global graph measures are extracted from static and dynamic functional connectivity matrices using fMRI data of 35 unilateral TLE subjects. Alterations in the time trend of the graph measures are quantified. The random forest (RF) method is used for the determination of feature importance and selection of dynamic graph features including mean, variance, skewness, kurtosis, and Shannon entropy. The selected features are used in the support vector machine (SVM) classifier to identify the left and right epileptogenic sides in patients with TLE. RESULTS: Our results for the performance of SVM demonstrate that the utility of dynamic features improves the classification outcome in terms of accuracy (88.5% for dynamic features compared with 82% for static features). Selecting the best dynamic features also elevates the accuracy to 91.5%. CONCLUSION: Accounting for the non-stationary characteristics of functional connectivity, dynamic connectivity analysis of graph measures along with machine learning approach can identify the temporal trend of some specific network features. These network features may be used as potential imaging markers in determining the epileptogenic hemisphere in patients with TLE.


Subject(s)
Epilepsy, Temporal Lobe , Brain/diagnostic imaging , Brain Mapping , Epilepsy, Temporal Lobe/diagnostic imaging , Functional Laterality , Humans , Machine Learning , Magnetic Resonance Imaging
14.
Appl Radiat Isot ; 167: 109442, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33045655

ABSTRACT

Food irradiation is a process in which food and other consumer products are exposed to gamma rays, X-rays or electron beams after extraction. This method is particularly important in order to reduce infectious agents and to extend the shelf life of the product. The target radiation is done with different devices, so self-sufficient radiation and panoramic radiation -including product and source overlap, planar and categorical radiation- is the major characteristics. Besides, a high performance liquid chromatography device (10% methanol, 70%-80% distilled water and 10% ethanol) is utilized to measure the chemical substance of pyridoxine (vitamin B3), thiamine (vitamin B6) and vitamin C of Vidalia or sweet onions. In our research, gamma-cell 220 and Rhodorton electron facilities were utilized to irradiate the onion crop. This project focuses on increasing the shelf life of agricultural products, especially onions, using energy of 1.25 MeV for both gamma irradiation and electron beam, and measuring the amount of vitamins B3, B6 and C, which are the nutrients of this product. The prepared onion samples were exposed under electron and gamma irradiations by two doses of 200 and 500 Gy at 25 °C. Then, a liquid chromatography device was utilized to measure the vitamins. The results showed that the onions were not damaged by 200 Gy doses and their nutritional properties were preserved, which means that not only can vitamins with this dose be retained without any spoilage for 30 days, but also eliminate pathogenic microorganisms. The process indicated that using 200 Gy radiations does not endanger the health of food and consumers.


Subject(s)
Electrons , Food Preservation/methods , Gamma Rays , Onions , Vitamins/radiation effects , Chromatography, Liquid , Radiation Dosage , Vitamins/metabolism
15.
J Nucl Cardiol ; 28(6): 2761-2779, 2021 12.
Article in English | MEDLINE | ID: mdl-32347527

ABSTRACT

INTRODUCTION: The purpose of this work was to assess the feasibility of acquisition time reduction in MPI-SPECT imaging using deep leering techniques through two main approaches, namely reduction of the acquisition time per projection and reduction of the number of angular projections. METHODS: SPECT imaging was performed using a fixed 90° angle dedicated dual-head cardiac SPECT camera. This study included a prospective cohort of 363 patients with various clinical indications (normal, ischemia, and infarct) referred for MPI-SPECT. For each patient, 32 projections for 20 seconds per projection were acquired using a step and shoot protocol from the right anterior oblique to the left posterior oblique view. SPECT projection data were reconstructed using the OSEM algorithm (6 iterations, 4 subsets, Butterworth post-reconstruction filter). For each patient, four different datasets were generated, namely full time (20 seconds) projections (FT), half-time (10 seconds) acquisition per projection (HT), 32 full projections (FP), and 16 half projections (HP). The image-to-image transformation via the residual network was implemented to predict FT from HT and predict FP from HP images in the projection domain. Qualitative and quantitative evaluations of the proposed framework was performed using a tenfold cross validation scheme using the root mean square error (RMSE), absolute relative error (ARE), structural similarity index, peak signal-to-noise ratio (PSNR) metrics, and clinical quantitative parameters. RESULTS: The results demonstrated that the predicted FT had better image quality than the predicted FP images. Among the generated images, predicted FT images resulted in the lowest error metrics (RMSE = 6.8 ± 2.7, ARE = 3.1 ± 1.1%) and highest similarity index and signal-to-noise ratio (SSIM = 0.97 ± 1.1, PSNR = 36.0 ± 1.4). The highest error metrics (RMSE = 32.8 ± 12.8, ARE = 16.2 ± 4.9%) and the lowest similarity and signal-to-noise ratio (SSIM = 0.93 ± 2.6, PSNR = 31.7 ± 2.9) were observed for HT images. The RMSE decreased significantly (P value < .05) for predicted FT (8.0 ± 3.6) relative to predicted FP (6.8 ± 2.7). CONCLUSION: Reducing the acquisition time per projection significantly increased the error metrics. The deep neural network effectively recovers image quality and reduces bias in quantification metrics. Further research should be undertaken to explore the impact of time reduction in gated MPI-SPECT.


Subject(s)
Cardiac Imaging Techniques/methods , Coronary Circulation , Myocardial Perfusion Imaging/methods , Neural Networks, Computer , Tomography, Emission-Computed, Single-Photon/methods , Feasibility Studies , Humans , Prospective Studies , Time Factors
16.
PET Clin ; 15(4): 403-426, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32768368

ABSTRACT

In the light of ever-increasing demands for PET scanner with better resolvability, higher sensitivity and wide accessibility for noninvasive screening of small structures and physiological processes in laboratory rodents, several dedicated PET scanners were developed and evaluated. Understanding conceptual design constraints pros and cons of different configurations and impact of the major components will be helpful to further establish the crucial role of these miniaturized systems in a broad spectrum of modern research. Hence, a comprehensive review of preclinical PET scanners developed till early 2020 with particular emphasis on innovations in instrumentation and geometrical designs is provided.


Subject(s)
Positron-Emission Tomography/methods , Animals , Humans , Models, Animal
17.
Radiat Prot Dosimetry ; 190(2): 208-216, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32692354

ABSTRACT

This study aimed to determine the effective doses of caregivers taking care of non-cancerous patients treated with iodine-131 (I-131). Patients (administered 185-1110 MBq of I-131) were given specific radiation safety instructions (RSI). Afterwards, caregivers were provided with thermoluminescent (TLD) dosimeter badges to be worn for 12-28 days when taking care of the patients. At the end of this period, TLD measurements were obtained. Results showed that caregivers' mean effective dose was 0.15 ± 0.15 mSv, which is far less than the international recommendations of 5 mSv. Furthermore, the effective doses had no significant correlation with administered I-131 activity to the patients, distance from the hospital, caregivers' age, educational level and mode of transport. Our study showed that radiation doses received by caregivers of non-cancerous patients are higher than that of cancerous patients, nevertheless their received doses were within the international limits, thereby indicating good compliance by the caregivers to RSI.


Subject(s)
Iodine Radioisotopes , Nuclear Medicine , Family , Humans , Iodine Radioisotopes/analysis , Iodine Radioisotopes/therapeutic use , Radiation Dosage , Thyroid Gland
18.
Brain Stimul ; 13(4): 1124-1149, 2020.
Article in English | MEDLINE | ID: mdl-32413554

ABSTRACT

BACKGROUND: The COVID-19 pandemic has broadly disrupted biomedical treatment and research including non-invasive brain stimulation (NIBS). Moreover, the rapid onset of societal disruption and evolving regulatory restrictions may not have allowed for systematic planning of how clinical and research work may continue throughout the pandemic or be restarted as restrictions are abated. The urgency to provide and develop NIBS as an intervention for diverse neurological and mental health indications, and as a catalyst of fundamental brain research, is not dampened by the parallel efforts to address the most life-threatening aspects of COVID-19; rather in many cases the need for NIBS is heightened including the potential to mitigate mental health consequences related to COVID-19. OBJECTIVE: To facilitate the re-establishment of access to NIBS clinical services and research operations during the current COVID-19 pandemic and possible future outbreaks, we develop and discuss a framework for balancing the importance of NIBS operations with safety considerations, while addressing the needs of all stakeholders. We focus on Transcranial Magnetic Stimulation (TMS) and low intensity transcranial Electrical Stimulation (tES) - including transcranial Direct Current Stimulation (tDCS) and transcranial Alternating Current Stimulation (tACS). METHODS: The present consensus paper provides guidelines and good practices for managing and reopening NIBS clinics and laboratories through the immediate and ongoing stages of COVID-19. The document reflects the analysis of experts with domain-relevant expertise spanning NIBS technology, clinical services, and basic and clinical research - with an international perspective. We outline regulatory aspects, human resources, NIBS optimization, as well as accommodations for specific demographics. RESULTS: A model based on three phases (early COVID-19 impact, current practices, and future preparation) with an 11-step checklist (spanning removing or streamlining in-person protocols, incorporating telemedicine, and addressing COVID-19-associated adverse events) is proposed. Recommendations on implementing social distancing and sterilization of NIBS related equipment, specific considerations of COVID-19 positive populations including mental health comorbidities, as well as considerations regarding regulatory and human resource in the era of COVID-19 are outlined. We discuss COVID-19 considerations specifically for clinical (sub-)populations including pediatric, stroke, addiction, and the elderly. Numerous case-examples across the world are described. CONCLUSION: There is an evident, and in cases urgent, need to maintain NIBS operations through the COVID-19 pandemic, including anticipating future pandemic waves and addressing effects of COVID-19 on brain and mind. The proposed robust and structured strategy aims to address the current and anticipated future challenges while maintaining scientific rigor and managing risk.


Subject(s)
Biomedical Research/methods , Delivery of Health Care/methods , Nervous System Diseases/therapy , Telemedicine/methods , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Aged , Behavior, Addictive/therapy , Betacoronavirus , Brain/physiology , COVID-19 , Child , Clinical Trials as Topic , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Practice Guidelines as Topic , SARS-CoV-2 , Stroke/therapy , Substance-Related Disorders/therapy
19.
Eur J Nucl Med Mol Imaging ; 47(11): 2533-2548, 2020 10.
Article in English | MEDLINE | ID: mdl-32415552

ABSTRACT

OBJECTIVE: We demonstrate the feasibility of direct generation of attenuation and scatter-corrected images from uncorrected images (PET-nonASC) using deep residual networks in whole-body 18F-FDG PET imaging. METHODS: Two- and three-dimensional deep residual networks using 2D successive slices (DL-2DS), 3D slices (DL-3DS) and 3D patches (DL-3DP) as input were constructed to perform joint attenuation and scatter correction on uncorrected whole-body images in an end-to-end fashion. We included 1150 clinical whole-body 18F-FDG PET/CT studies, among which 900, 100 and 150 patients were randomly partitioned into training, validation and independent validation sets, respectively. The images generated by the proposed approach were assessed using various evaluation metrics, including the root-mean-squared-error (RMSE) and absolute relative error (ARE %) using CT-based attenuation and scatter-corrected (CTAC) PET images as reference. PET image quantification variability was also assessed through voxel-wise standardized uptake value (SUV) bias calculation in different regions of the body (head, neck, chest, liver-lung, abdomen and pelvis). RESULTS: Our proposed attenuation and scatter correction (Deep-JASC) algorithm provided good image quality, comparable with those produced by CTAC. Across the 150 patients of the independent external validation set, the voxel-wise REs (%) were - 1.72 ± 4.22%, 3.75 ± 6.91% and - 3.08 ± 5.64 for DL-2DS, DL-3DS and DL-3DP, respectively. Overall, the DL-2DS approach led to superior performance compared with the other two 3D approaches. The brain and neck regions had the highest and lowest RMSE values between Deep-JASC and CTAC images, respectively. However, the largest ARE was observed in the chest (15.16 ± 3.96%) and liver/lung (11.18 ± 3.23%) regions for DL-2DS. DL-3DS and DL-3DP performed slightly better in the chest region, leading to AREs of 11.16 ± 3.42% and 11.69 ± 2.71%, respectively (p value < 0.05). The joint histogram analysis resulted in correlation coefficients of 0.985, 0.980 and 0.981 for DL-2DS, DL-3DS and DL-3DP approaches, respectively. CONCLUSION: This work demonstrated the feasibility of direct attenuation and scatter correction of whole-body 18F-FDG PET images using emission-only data via a deep residual network. The proposed approach achieved accurate attenuation and scatter correction without the need for anatomical images, such as CT and MRI. The technique is applicable in a clinical setting on standalone PET or PET/MRI systems. Nevertheless, Deep-JASC showing promising quantitative accuracy, vulnerability to noise was observed, leading to pseudo hot/cold spots and/or poor organ boundary definition in the resulting PET images.


Subject(s)
Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Positron-Emission Tomography , Tomography, X-Ray Computed
20.
Jpn J Radiol ; 38(8): 790-799, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32253654

ABSTRACT

PURPOSE: Molecular imaging, particularly PET scanning, has become an important cancer diagnostic tool. Whole-body PET is not effective for local staging of cancer because of their declining efficiency in detecting small lesions. The preliminary results of the performance evaluation of designed dedicated breast PET scanner presented. METHODS AND MATERIALS: A new scanner is based on LYSO crystals coupled with SiPM, and it consists of 14 compact modules with a transaxial FOV of 180 mm in diameter. In this study, initial GATE simulation studies were performed to predict the spatial resolution, absolute sensitivity, noise equivalent count rate (NECR) and scatter fraction (SF) of the new design. Spatial wobbling acquisitions were also implemented. Finally, the obtained projections were reconstructed using analytical and iterative algorithms. RESULTS: The simulation results indicate that absolute sensitivity is 1.42% which is appropriate than other commercial breast PET systems. The calculated SF and NECR in our design are 20.6% and 21.8 kcps. The initial simulation results demonstrate the potential of this design for breast cancer detection. A small wobble motion to improve spatial resolution and contrast. CONCLUSION: The performance of the dedicated breast PET scanner is considered to be reasonable enough to support its use in breast cancer imaging.


Subject(s)
Breast/diagnostic imaging , Monte Carlo Method , Positron-Emission Tomography/instrumentation , Positron-Emission Tomography/methods , Algorithms , Equipment Design , Female , Humans , Phantoms, Imaging , Positron-Emission Tomography/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...