Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 136: 102624, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38876524

ABSTRACT

This study aimed to explore the effects of different light intensities on the ecophysiology of eight new Dinophysis isolates comprising four species (D. acuminata, D. ovum, D. fortii, and D. caudata) collected from different geographical regions in the US. After six months of acclimation, the growth rates, photosynthetic efficiency (Fv/Fm ratio), toxin content, and net toxin production rates of the Dinophysis strains were examined. The growth rates of D. acuminata and D. ovum isolates were comparable across light intensities, with the exception of one D. acuminata strain (DANY1) that was unable to grow at the lowest light intensity. However, D. fortii and D. caudata strains were photoinhibited and grew at a slower rate at the highest light intensity, indicating a lower degree of adaptability and tolerance to such conditions. Photosynthetic efficiency was similar for all Dinophysis isolates and negatively correlated with exposure to high light intensities. Multiple toxin metrics, including cellular toxin content and net production rates of DSTs and PTXs, were variable among species and even among isolates of the same species in response to light intensity. A pattern was detected, however, whereby the net production rates of PTXs were significantly lower across all Dinophysis isolates when exposed to the lowest light intensity. These findings provide a basis for understanding the effects of light intensity on the eco-physiological characteristics of Dinophysis species in the US and could be employed to develop integrated physical-biological models for species and strains of interest to predict their population dynamics and mitigate their negative effects.


Subject(s)
Dinoflagellida , Light , Photosynthesis , Dinoflagellida/physiology , Dinoflagellida/radiation effects , Acclimatization , Marine Toxins , Species Specificity
2.
J Phycol ; 59(4): 658-680, 2023 08.
Article in English | MEDLINE | ID: mdl-36964950

ABSTRACT

Multiple species of the genus Dinophysis produce diarrhetic shellfish toxins (okadaic acid and Dinophysis toxins, OA/DTXs analogs) and/or pectenotoxins (PTXs). Only since 2008 have DSP events (illnesses and/or shellfish harvesting closures) become recognized as a threat to human health in the United States. This study characterized 20 strains representing five species of Dinophysis spp. isolated from three US coastal regions that have experienced DSP events: the Northeast/Mid-Atlantic, the Gulf of Mexico, and the Pacific Northwest. Using a combination of morphometric and DNA-based evidence, seven Northeast/Mid-Atlantic isolates and four Pacific Northwest isolates were classified as D. acuminata, a total of four isolates from two coasts were classified as D. norvegica, two isolates from the Pacific Northwest coast were identified as D. fortii, and three isolates from the Gulf of Mexico were identified as D. ovum and D. caudata. Toxin profiles of D. acuminata and D. norvegica varied by their geographical origin within the United States. Cross-regional comparison of toxin profiles was not possible with the other three species; however, within each region, distinct species-conserved profiles for isolates of D. fortii, D. ovum, and D. caudata were observed. Historical and recent data from various State and Tribal monitoring programs were compiled and compared, including maximum recorded cell abundances of Dinophysis spp., maximum concentrations of OA/DTXs recorded in commercial shellfish species, and durations of harvesting closures, to provide perspective regarding potential for DSP impacts to regional public health and shellfish industry.


Subject(s)
Dinoflagellida , Shellfish Poisoning , United States , Humans , Marine Toxins , Okadaic Acid , Shellfish/analysis
3.
J Phycol ; 56(1): 97-109, 2020 02.
Article in English | MEDLINE | ID: mdl-31591715

ABSTRACT

Toxic Pseudo-nitzschia australis strains isolated from French coastal waters were studied to investigate their capacity to adapt to different salinities. Their acclimation to different salinity conditions (10, 20, 30, 35, and 40) was studied on growth, photosynthetic capacity, cell biovolume, and domoic acid (DA) content. The strains showed an ability to acclimate to a salinity range from 20 to 40, with optimal growth rates between salinities 30 and 40. The highest cell biovolume was observed at the lowest salinity 20 and was associated with the lowest growth rate. Salinity did not affect the photosynthetic activity; Fv /Fm values and the pigment contents remained high with no significant difference among salinities. An enhanced production of zeaxanthin was, however, observed in the late stationary and decline phases in all cultures except for those acclimated to salinity 20. In terms of cellular toxin content, DA concentrations were 2 to 3-fold higher at the lowest salinity (20) than at the other salinities and were combined with a low amount of dissolved DA. The fact that P. australis accumulate more DA per cell in less saline waters, illustrates that climate-related changes in salinity may affect Pseudo-nitzschia physiology through direct effects on growth, physiology, and toxin content.


Subject(s)
Diatoms , Acclimatization , Kainic Acid/analogs & derivatives , Salinity
4.
J Phycol ; 55(1): 186-195, 2019 02.
Article in English | MEDLINE | ID: mdl-30329158

ABSTRACT

Several coastal countries including France have experienced serious and increasing problems related to Pseudo-nitzschia toxic blooms. These toxic blooms occur in estuarine and coastal waters potentially subject to fluctuations in salinity. In this study, we document for the first time the viability, growth, photosynthetic efficiency, and toxin production of two strains of Pseudo-nitzschia australis grown under conditions with sudden salinity changes. Following salinity variation, the two strains survived over a restricted salinity range of 30-35, with favorable physiological responses, as the growth, effective quantum yield and toxin content were high compared to the other conditions. In addition, high cellular quotas of domoic acid (DA) were observed at a salinity of 40 for the strain IFR-PAU-16.1 in comparison with the other strain IFR-PAU-16.2 where the cell DA content was directly released into the medium. On the other hand, the osmotic stress imposed at lower salinities, 20 and 10, resulted in cell lysis and a sudden DA leakage in the medium. Intra-specific variability was observed in growth and toxin production, with the strain IFR-PAU-16.1 apparently able to withstand higher salinities than the strain IFR-PAU-16.2. On the whole, DA does not appear to act as an osmolyte in response to sudden salinity changes. Since most of the shellfish harvesting areas of bivalve molluscs in France are located in areas where the salinity generally varies between 30 and 35, Pseudo-nitzschia australis blooms might potentially impact public health and commercial shellfish resources in these places.


Subject(s)
Diatoms , Salinity , France , Kainic Acid/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL
...