Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 12(4)2023 02 09.
Article in English | MEDLINE | ID: mdl-36831232

ABSTRACT

The pancreas is an abdominal gland that serves 2 vital purposes: assist food processing by secreting digestive enzymes and regulate blood glucose levels by releasing endocrine hormones. During embryonic development, this gland originates from epithelial buds located on opposite sites of the foregut endoderm. Pancreatic cell specification and maturation are coordinated by a complex interplay of extrinsic and intrinsic signaling events. In the recent years, the canonical Wnt/ß-catenin pathway has emerged as an important player of pancreas organogenesis, regulating pancreatic epithelium specification, compartmentalization and expansion. Importantly, it has been suggested to regulate proliferation, survival and function of adult pancreatic cells, including insulin-secreting ß-cells. This review summarizes recent work on the role of Wnt/ß-catenin signaling in pancreas biology from early development to adulthood, emphasizing on its relevance for the development of new therapies for pancreatic diseases.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Pregnancy , Female , Humans , beta Catenin/metabolism , Pancreas/metabolism , Organogenesis , Embryonic Development
2.
Front Endocrinol (Lausanne) ; 13: 861922, 2022.
Article in English | MEDLINE | ID: mdl-35573999

ABSTRACT

Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.


Subject(s)
Homeodomain Proteins/metabolism , Paired Box Transcription Factors/metabolism , Somatostatin-Secreting Cells , Animals , Homeodomain Proteins/genetics , Insulin , Mice , Paired Box Transcription Factors/genetics , Somatostatin/genetics
3.
Cells ; 10(11)2021 10 20.
Article in English | MEDLINE | ID: mdl-34831029

ABSTRACT

Background: Although several approaches have revealed much about individual factors that regulate pancreatic development, we have yet to fully understand their complicated interplay during pancreas morphogenesis. Gfi1 is transcription factor specifically expressed in pancreatic acinar cells, whose role in pancreas cells fate identity and specification is still elusive. Methods: In order to gain further insight into the function of this factor in the pancreas, we generated animals deficient for Gfi1 specifically in the pancreas. Gfi1 conditional knockout animals were phenotypically characterized by immunohistochemistry, RT-qPCR, and RNA scope. To assess the role of Gfi1 in the pathogenesis of diabetes, we challenged Gfi1-deficient mice with two models of induced hyperglycemia: long-term high-fat/high-sugar feeding and streptozotocin injections. Results: Interestingly, mutant mice did not show any obvious deleterious phenotype. However, in depth analyses demonstrated a significant decrease in pancreatic amylase expression, leading to a diminution in intestinal carbohydrates processing and thus glucose absorption. In fact, Gfi1-deficient mice were found resistant to diet-induced hyperglycemia, appearing normoglycemic even after long-term high-fat/high-sugar diet. Another feature observed in mutant acinar cells was the misexpression of ghrelin, a hormone previously suggested to exhibit anti-apoptotic effects on ß-cells in vitro. Impressively, Gfi1 mutant mice were found to be resistant to the cytotoxic and diabetogenic effects of high-dose streptozotocin administrations, displaying a negligible loss of ß-cells and an imperturbable normoglycemia. Conclusions: Together, these results demonstrate that Gfi1 could turn to be extremely valuable for the development of new therapies and could thus open new research avenues in the context of diabetes research.


Subject(s)
DNA-Binding Proteins/deficiency , Diabetes Mellitus/metabolism , Diabetes Mellitus/prevention & control , Transcription Factors/deficiency , Acinar Cells/cytology , Acinar Cells/metabolism , Amylases/metabolism , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Diabetes Mellitus/genetics , Disease Models, Animal , Gene Expression Regulation , Ghrelin/metabolism , Homeodomain Proteins/metabolism , Hyperglycemia/complications , Hyperglycemia/genetics , Integrases/metabolism , Mice, Transgenic , Mutation/genetics , Pancreas/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
4.
FASEB J ; 34(4): 5046-5060, 2020 04.
Article in English | MEDLINE | ID: mdl-32043636

ABSTRACT

Nonalcoholic fatty liver disease is a chronic liver disease which is associated with obesity and insulin resistance. We investigated the implication of REDD1 (Regulated in development and DNA damage response-1), a stress-induced protein in the development of hepatic steatosis. REDD1 expression was increased in the liver of obese mice and morbidly obese patients, and its expression correlated with hepatic steatosis and insulin resistance in obese patients. REDD1 deficiency protected mice from the development of hepatic steatosis induced by high-fat diet (HFD) without affecting body weight gain and glucose intolerance. This protection was associated with a decrease in the expression of lipogenic genes, SREBP1c, FASN, and SCD-1 in liver of HFD-fed REDD1-KO mice. Healthy mitochondria are crucial for the adequate control of lipid metabolism and failure to remove damaged mitochondria is correlated with liver steatosis. Expression of markers of autophagy and mitophagy, Beclin, LC3-II, Parkin, BNIP3L, was enhanced in liver of HFD-fed REDD1-KO mice. The number of mitochondria showing colocalization between LAMP2 and AIF was increased in liver of HFD-fed REDD1-KO mice. Moreover, mitochondria in liver of REDD1-KO mice were smaller than in WT. These results are correlated with an increase in PGC-1α and CPT-1 expression, involved in fatty acid oxidation. In conclusion, loss of REDD1 protects mice from the development of hepatic steatosis.


Subject(s)
Non-alcoholic Fatty Liver Disease/genetics , Transcription Factors/deficiency , Adult , Animals , Autophagy , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cells, Cultured , Diet, High-Fat/adverse effects , Fatty Acid Synthase, Type I/genetics , Fatty Acid Synthase, Type I/metabolism , Female , Gene Deletion , Humans , Male , Mice , Mitophagy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...